
www.manaraa.com



www.manaraa.com

Focus on Computer Graphics 
Tutorials and Perspectives in Computer Graphics ~ 

Edited by WT. Hewitt, R. Gnatz, and W. Hansmann ~ 
o 



www.manaraa.com

C. Laffra E. H. Blake V. de Mey 
X. Pintado (Eds.) 

Object-Oriented 
Programming 
for Graphics 

With 102 Figures 

Springer 



www.manaraa.com

Focus on Computer Graphics 

Edited by W. T. Hewitt, R. Gnatz, and W. Hansmann 
for EUROGRAPHICS -
The European Association for Computer Graphics 
P. O. Box 16, CH-1288 Aire-Ia-Ville, Switzerland 

Volume Editors 

Chris Laffra 

Morgan Stanley & Co, Inc. 
1251 Avenue of the Americas 
New York, NY 10020, USA 

Vicki de Mey 

Apple Computer, Inc. 
One Infinite Loop, MS: 301-41 
Cupertino, CA 95014, USA 

Coverpicture: see contribution p. 155 

Edwin H. Blake 

University of Cape Town 
Computer Science Department 
Rondebosch 7700, South Africa 

Xavier Pintado 

University of Geneva 
Centre Universitaire 
d'lnformatique, 
24, rue du General-Dufour 
CH-1211 Geneva 4, Suisse 

ISBN-13: 978-3-642-79194-9 
DOl: 10.1007/978-3-642-79192-5 

e-ISBN-13: 978-3-642-79192-5 

CIP-data applied for 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication 
of this publication or parts thereof is permitted only under the provisions of the German Copyright 
Law of September 9, 1965, in its current version, and permission for use must always be obtained 
from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. 

© 1995 EUROGRAPHICS The European Association for Computer Graphics 

Softcover reprint of the hardcover 1st edition 1995 

The use of general descriptive names, registered names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 

Cover: Konzept & Design Kiinkel, Lopka GmbH, IIvesheim, FRG 
Typesetting: Camera-ready copy by authors/editors 
SPIN 10085222 45/3142 - 5 4 3 210 - Printed on acid-free paper 



www.manaraa.com

Preface 

This book contains thoroughly revised versions of papers submitted to and pre
sented at the second and third EUROGRAPHICS workshops on Object-Oriented 
Graphics. 

The second workshop was held on June 4-7,1991, on the island Texel, The Nether
lands. A report by Remco Veltkamp and Edwin Blake follows. The workshop was 
made possible by support of the Dutch Centre for Mathematics and Computer Sci
ence (CWI), in particular Ms. Marja Hegt, who organized all local arrangements. 
Further support was given by the Dutch Software Engineering Research Center 
(SERC), and by the Dutch Organization for Scientific Research (NWO). 

The third workshop was held on October 28-30, 1992, in Champery, Switzerland. 
A report by Nancy Craighill, Vicki de Mey, and Xavier Pintado follows. Support 
was given by Centre Universitaire d'Informatique (Object Systems Group) of the 
University of Geneva, Switzerland, and NeXT Inc" Switzerland. 

Typesetting support for this book was given by the IBM T.J. Watson Research 
Center and Morgan Stanley & Co. 

December 1994 Chris Laffra 
Edwin Blake 
Vicki de Mey 

Xavier Pintado 
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Report on The Second Eurographics 
Workshop on Object-Oriented Graphics 

Remco Veltkamp and Edwin Blake 

Object-oriented concepts are particularly applicable to Computer Graphics in its 
broadest sense - interaction, images synthesis, animation, and CAD. Research 
in Object-Oriented Graphics has lead to a critique of the object-oriented theory. 
The aim of the second Eurographics Workshop on Object-Oriented Graphics was 
to address fundamental issues arising from the use of object-oriented techniques 
in computer graphics, to provide a platform to state views on relevant issues, and 
discuss possible research programmes to address remaining unresolved problems. 

The workshop was held on June 4-7 on the island Texel, The Netherlands. A total 
of 30 people attended the workshop, coming from The Netherlands (10 partici
pants), Germany (7), USA (4), Switzerland (3), France (2), Australia (1), Austria 
(1), Portugal (1), and Turkey (1). 

1 Presentations 

There were 11 full papers and 13 position papers presented. The presentations were 
grouped into four sessions: modelling, constraints, user interfaces, and rendering. 

1.1 Modelling 

This session was about issues dealing with the complexity in the design and imple
mentation of computer graphics systems. The first paper of the workshop explores 
new ways to model virtual reality based on distributed control by actors, communi
cating via tuple spaces in the coordination language Linda. Other presentations in 
the modelling session were about basic mechanisms for structuring graphic objects 
in order to build higher structures from a kernel, flexible graphics design systems, 
an object oriented implementation of compound graphical objects, the represen
tation and manipulation of structure for computer animation, and problems with 
database graphics systems. 

1.2 Constraints 

The use of constraints in managing the complexity of designing interactive graphics 
systems and the use of object-oriented methods for describing simulations and sys
tems of concrete objects have been two natural methods for building large complex 
graphics systems. This widely acknowledged way of dealing with the complexities 
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of modelling and interface design has had disappointingly little practical impact. 
This session explored some of the problems involved. 

The topics covered were: the design of a co-operative, or intelligent, graphical ed
itor for constrained objects, the satisfaction of inter-object constraints only when 
the objects' internal constraints are satisfied, the embedding of constraints in a 
prototype-based system, a discussion on object-oriented vs. declarative approaches 
to computer graphics, and a method for satisfaction at a geometric level, which is 
particularly suited for underconstrained cases. 

1.3 User Interfaces 

The great benefits of class inheritance in user interface design is well recognized and 
is finding increasing commercial application. Indeed, a great deal has already been 
published on object-oriented design and object-oriented design of user interfaces. 

The presentations in the user-interface session described the implementation of 
combining a logic programming system with a user interface toolkit, an architecture 
developed for direct manipulation of both application and the interface objects, 
similar objectives in the context of a run time system and a tool for implementation, 
a framework for object-oriented open user interfaces, and the direct interactive 
generation of interactive systems. 

1.4 Rendering 

The last session was on rendering. A class hierarchy of geometries and associ
ated rendering algorithms naturally lend itself for an object-oriented design. The 
presentations in this session discussed a toolkit for visualization offinite element 
calculations using alpha-numeric messages, a test environment for global illumi
nation algorithms, ideas on object-oriented computational geometry, and volume 
visualization. 

2 Discussions 

Not all of the above mentioned topics are found in the selected papers presented in 
this book. It was felt that the more interesting part of the workshop was about the 
conceptual ideas of Object-Oriented Graphics, rather than graphic implementations 
using object-oriented programming techniques. 

In the spirit of the constant fight between land and water in The Netherlands (we 
also enjoyed an excursion to particular examples of related phenomena such as the 
"wadden" sea, a "slufter", and plenty of dykes), we not only had discussions directly 
related to the papers that were presented, but also an evening discussion about 
Object-Oriented Graphics standards, and an ongoing discussion abqut constraints 
in Object-Oriented Graphics. The discussion about standards of Object-Oriented 
Graphics was meant to outline what must be provided by such a standard, and 
in which way. No real consensus was achieved, and this topic was seen as a major 
theme for the next workshop. In the discussions about constraints in object-oriented 
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environments, not everyone was convinced that there is a problem of possible in
fringement of information hiding. The various approaches to a solution all have 
their limitations, and a more satisfying solution is yet to come. 

3 Conclusion 

The use of object-oriented techniques in computer graphics is a widely acknowl
edged way of dealing with the complexities in graphics systems. However, the field 
of Object-Oriented Graphics is still being explored and developed, and the problems 
are diverse. 

In the discussions during the workshop, the following topics were found interesting 
research directions: parallel techniques - can computer graphics do without?; 
global and local relations between objects - when and how do they conflict with 
object-oriented concepts?; extensibility of object-oriented graphics systems - how 
to combine new primitives and inheritance?; operating system support - e.g. how 
to support persistent objects?; object-oriented graphics standards - should it be 
conservative, must (part of) the source code be provided? 
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Report on The Third Eurographics 
Workshop on Object-Oriented Graphics 

Nancy Craig hill, Vicki de Mey, and Xavier Pintado 

This introduction sets the stage for the selected papers and attempts to summarize 
the discussions and any conclusions made during the Third Eurographics Work
shop on Object-Oriented Graphics. The goal of the workshop was to begin outlining 
a common platform, based on a set of object-oriented primitives, for the support 
of graphics applications. As presentations were made, four primary topics of dis
cussion began to emerge: design of graphics objects, object model requirements, 
implementation techniques and other related technology. Partly because ofthe di
verse presentations and experiences of the attendees, we made little progress on 
actually identifying a common set of graphics objects. The discussions were never
theless lively and many important issues were raised. 

1 Design 

The design of graphics objects (the graphics kernel) can be fairly language inde
pendent and described via class hierarchy, part-whole and message flow diagrams. 

1.1 Standardization 

Standardization efforts are currently under way. Most felt that a common graphics 
kernel could be designed but were concerned that the traditional standardization 
process may not produce a good design if it does not take into account the iterative 
nature of object-oriented design. Thus, any standardization effort should produce 
working prototypes and establish testbeds to evaluate the reusablity, maintainabil
ity and extensibility of their design. 

1.2 Modeling and Rendering Layers 

It was agreed that the graphics rendering layer should be separated from the mod
eling layer-there should be two distinct graphics class categories. Thus different 
renders can be easily swapped independent of the actual graphics model. 

Designers must be careful about what information is passed back and forth between 
modeling and rendering objects so that encapsulation is not circumvented. It is 
reasonable for the modeling layer to query the rendering layer for its capabilities 
in order to take appropriate actions; however, these capabilities must be defined in 
some generic fashion. 
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1.3 Model-View-Controller Paradigm 

Several presentations revealed that the Model-View-Controller Paradigm (MVC) 
can be improved by new and perhaps more efficient ways of communicating update 
and change messages between models and views. Traditional MVC (a la Small talk) 
can over complicate model and view implementations. 

2 Object Model 

Class-instance versus delegation is an issue that relates to the graphics require
ments of an object model. The object model defines "a common object semantics 
for specifying the externally visible characteristics of objects in a standard and 
language-independent way" (the OMG reference model). 

2.1 Class-Instance Versus Delegation 

The primary issue is whether or not class-instance is appropriate for graphics. 
It was argued that delegation languages may be more appropriate for graphics 
because of the run-time freedom to compose objects and inherit methods, thus 
being a better match to the way end-users manipulate and think about graphics. 

However, class-instance combined with constraints and perhaps dynamic binding 
would provide equivalent functionality. Thus the choice of object model is more or 
less a preference. Therefore, standardization efforts must be careful not to inhibit 
the choice of different object models. 

3 Implementation Techniques 

3.1 Multiple Inheritance Versus Composition 

Is multiple inheritance really necessary? It was generally thought that relying 
heavily on language constructs, such as multiple inheritance, was an artifact of 
a particular language; for example, implementations using statically typed lan
guages, such as C++, tend to rely heavily on multiple inheritance. 

3.2 Efficiency 

How do we efficiently handle thousands of graphics objects on a display? Naturally 
the object-oriented paradigm has some overhead costs, especially if each graphic is 
an interactive object. Some solutions are to implement short-cuts in the graphics 
kernel. For example, a hash table lookup may be used to quickly identify the target 
object after a mouse click, as opposed to traversing a tree structure. 

4 Related Technologies 

The workshop also highlighted many issues that can be seen as external influences 
to graphics. Many of these are future technologies that designers should anticipate. 
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4.1 Constraints 

Constraints play an important role in graphics (Le., in a CAD application, moving 
one gear affects the movement of another gear). Constraints may be geometric or 
non-geometric (color, texture, or other) in nature, and may be internal or external 
(affect other objects). There are good indications that if external constraints do not 
violate encapsulation then the constraint resolution problem may be exponential. 

This lead to a discussion of the importance of encapsulation and the difficulties 
in merging different paradigms with object-oriented programming. We concluded 
that for special cases, breaking encapsulation can be permitted if the overall sys
tem achieves the goals of object-oriented programming: modularity, reusability and 
extensibility. 

Although constraints are very important to graphics, constraints are not particu
lar to graphics. Therefore, the graphics kernel should not address the constraint 
problem. 

4.2 OMG, OODBMS and Distributed Objects 

The OMG reference model was presented as a basis for evaluating and comparing 
different object technologies. The object-oriented graphics kernel is an example of a 
common facility in this architecture designed to be used by many applications. The 
architecture also supports object persistence via object-oriented database manage
ment systems (OODBMS), and distributed objects allowing parallel and distributed 
computing. 

Most of this technology is very new and few systems conform entirely to the OMG 
reference model. However, initial experiences with OODBMS and distributed ob
jects indicate that this technology will impact object-oriented designs and therefore 
should be considered when designing a common graphics kernel. 

5 Summary 

Discussions, such as the ones at this workshop, are far from being over. There is 
still some skepticism as to whether or not OOP is the right way to go for graphics. 
We need to see the real benefits of OOP and we need to show that OOP helps 
by providing solutions to graphics problems. A collection of example strategies for 
solving certain "known" graphics problems would be beneficial. In general, we need 
more experience with related object technologies to evaluate their applicability to 
graphics. The graphics community is not an island. It needs to address its own 
particular problems in the light of new technical advances and thus benefit from 
the work of others. 
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Actor-Based Simulation + Linda 
Virtual Environments 

William Leier 

While it may be called different names - virtual reality, cyberspace, or virtual environments -
the expectations are similar. We desire a way to interact completely and seamlessly with other 
entities, whether those entities be other individuals, synthetic individuals, or just raw information 
and data. Unfortunately, there is a huge gap between our dreams for virtual environments 
and the current state-of-the-art. This chapter explores some of the reasons for this situation, 
and brings together ideas from diverse fields, including object-oriented programming, parallel 
computation, policy management, and even computer music, in an attempt to take a fresh look 
at how to build the reality of our dreams. 

1 Do Our Tools Become Us? 

The earliest computer-generated animations were not overly concerned with the 
representation of reality. In Permutations by John Whitney, Sr., the subject matter 
is abstract geometry in motion [Whitney]. In Hunger by Peter Foldes, reality serves 
only as a jumping off point for a world in which animate and inanimate objects 
transform into each other and even motion is a form of change [Foldes]. In neither of 
these films is there a single static object. But both of these movies remain enjoyable, 
despite their age and now primitive technology. 

Computer graphics then entered a commercial period largely dominated by com
puter-aided design (CAD) applications. CAD software is used to design objects 
with fixed geometry, whether they be mechanical parts, buildings, or illustrations. 
The commercial use of this software has been the driving force behind software 
development for computer graphics, including hidden surface elimination, curved 
surfaces and CSG. While CAD tools have given us the means to create beautiful 
rigid objects, software for other aspects of computer graphics has not kept up. 
Computer animation no longer features the amazing transformations found in 
Permutations or Hunger, but is instead dominated by flying logos and other rigid 
objects; animation driven by simple motion in space or the movement of jointed 
objects. 
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2 Virtual Environments 

What distinguishes virtual environments from other media is the high degree of 
synergy possible between the the user (the occupant of or participant in the virtual 
environment) and the computer. The occupant should be an integral part of the 
environment; in fact, it is probably misleading to think of a virtual environment 
separate from the occupant (without an observer, what does it mean for a tree to 
fall in a virtual forest?). 

Unfortunately, nowhere is the legacy of CAD software more apparent than in virtual 
environments, since a typical virtual environment is created using a CAD program. 
CAD-derived software encourages us to think of the virtual environment as an 
entity that exists independently of the observer (for example, a virtual building to 
be walked through). The resulting environments are largely static with minimal 
user input; any interaction is typically bolted on after the environment is "created" 
by the designer. Even what is considered advanced interaction, such as hitting 
virtual drums to make sounds, is derived from collision and interference detection 
algorithms developed for CAD use. More typically, the user's role is limited to 
putting on the eyephones and exploring; after an environment has been explored a 
few times it often becomes boring. 

Part of the problem with virtual environments may be due to the primitive state 
of hardware and software, but primitive hardware and software didn't stop John 
Whitney or Peter Foldes. One could even argue that if advanced CAD software 
didn't exist, virtual environments would be more interesting. Even video games, 
with their flat graphics but intense interaction, are more engaging. 

3 Virtual Environments in Music 

It is enlightening to compare virtual realities with current work going on in the 
electronic music world, in particular the work creating electronic accompaniment 
to live musical instruments by computer (for example, the work of Daniel Scheidt 
[Scheidt] or George Lewis [Lewis]). In some sense these are virtual environments: 
the computer program takes input data from the musician in the form of MIDI 
data (or raw musical notes), interprets this data in some way, and then generates 
a response, again in the form of MIDI data (or other audible output). The musical 
output, in turn, is heard by the musician and affects what is played. The role ofthe 
composer/programmer is to define how the musical gestures of the musician are 
interpreted and the nature ofthe (musical) response to these stimuli. 

Even though such a program is semiautonomous and can be considered a virtual 
environment, it is never thought of as an experience on its own, separate from the 
musician. Every performance of the program will be different, even with the same 
musician (let alone a different one). 

Another difference is that a virtual environment typically assumes little or no skill 
on the part of the occupant, while an electronic accompaniment setup assumes at 
least a competent musician to supply the input, or even a virtuoso. What would 
it mean to have a virtuoso occupant of a virtual environment? (We already have 
indications that this could produce enhanced results, for example, the Mandala 
system by Vincent John Vincent and Frank MacDougal, which can be used by 
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anyone, but is much more interesting under the control of an experienced user). 
In contrast, most existing virtual environments are much the same no matter 
who occupies them; evidence of the limited influence the occupant has in these 
environments. 

Another important aspect of electronic music systems is their reconfigurability. 
Electronic music equipment and studios take the principles of object-oriented sys
tems and decentralized control to their logical physical end: separate boxes with 
their own control that communicate via MIDI data through MIDI switchers and 
audio links through audio mixers. Such setups are rapidly reconfigurable, often 
being changed (i.e., reprogrammed) in midperformance (for example, in the work of 
Daniel Scheidt, where the composer/programmer is an integral part of an improvi
sational performance). In contrast, most virtual environments are controlled by a 
single program, utilizing a single stream of control. This lack of modularity makes 
virtual environments difficult to reconfigure. 

4 Filters 

CAD-influenced software encourages us to think of a virtual environment as an 
entity that exists independently of the occupant, and the occupant as a relatively 
uninfluential observer. Instead, the occupant of a virtual environment should be 
treated as an integral part of the environment. One way to do this is to think of a 
virtual environment as a set oftransfer functions between the user's actionS and the 
computer's reactions. Using engineering terminology, such a function (whose output 
is a function of its input) is called a filter. The filters in the virtual environment take 
input (possibly from the occupant), transform it in some way, and then generate 
output (possibly back to the occupant). 

The concept of a virtual environment as a set of filters is closer to the electronic 
music view of a musical virtual environment. In a musical virtual environment 
there are often no fixed notes; sounds are created only in response to user input 
(musical gestures), as are the characteristics of those sounds (pitch, volume, tempo, 
and so on.). We can do the same thing in a virtual environment. The gestures of 
the occupant can be used to control the appearance and even the structure of the 
environment. For example, different user gestures could create different kinds of 
objects in the environment. Another example would be a world created out of words 
spoken by the occupant. Such a system could be used simply as a way to organize 
thoughts, or the words could become huge three-dimensional objects to create a 
space to be explored, or even link together like a crossword puzzle. 

On a more practical level, virtual environments can be used in scientific visualiza
tion to view multidimensional data. Flat, two-dimensional computer screens are 
commonly used to view three-dimensional data, or, with the addition of animation 
and movement, four- dimensional data. But much scientific data has five or more, 
even hundreds of dimensions - we are not only talking about spatial dimensions 
here - for example, we might want to view a three-dimensional gas plasma over time 
under varying conditions of temperature and pressure; the data for this problem 
has six dimensions. Most virtual environment input devices, such as the data-glove 
or space-ball, or even the position and orientation of the occupant's head in the 
eyephones, have five or six dimensions, and combinations of input devices can be 
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used for higher dimensions. Filters can be defined to translate from one or multiple 
ofthese input device dimensions into views that allow the occupant to explore high 
dimensional spaces. 

Filters can also incorporate a concept of time. For example, many virtual envi
ronments recognize gestural input, but in the largely static environments common 
today it is not surprising that typically only static gestures are recognized. However, 
most interesting gestures involve a time component, for example waving, "throwing 
your hands up in disgust" or even the difference between shaking your head "no" 
and nodding your head "yes". This can be done by defining a filter that takes raw 
input device coordinates as input and examines them over time to recognize a set 
of gestures, and outputs any recognized gestures, which are then used by other 
filters as input. One way to build such a filter, which itself utilizes filters, is to use 
a simple filter to recognize static gestures, and then to feed the output of this filter 
into a second filter that recognizes patterns of static gestures over time. Much of 
the power of filters comes from their ability to be reconfigured in this way. 

The designer of a virtual environment defines the filters and connects them, decid
ing what variables are dependent on what external input, and what variables are 
independent. As is common in such object-oriented systems, a toolbox of predefined 
filters can be supplied, or new filters that are built can be reused. Furthermore, 
thinking of the environment as a set of filters lets us see that the designer and the 
occupant need not be separate. The occupant of the environment should have the 
ability to change the definition of and the connections between the filters. For exam
ple, a scientist trying to interpret some six-dimensional data could choose different 
filters depending on the particular aspect of the data that is being explored. 

5 Behaviour 

The filters in a virtual environment need not be simple functions between the inputs 
and outputs. Instead, a filter can contain state information. This state is not static 
(as in current virtual environments), it is affected by the filter input (from the user 
or the output from another filter) and in tum affects the outputs (to the user or 
to another filter). When individual filters in a virtual environment are dependent 
on their own internal state, in addition to user input, these filters can appear to 
possess behaviour. In this case, we usually call these filters objects, or actors. 

The rules governing these behaviours need not be complex in order to be interesting. 
The cells in the Game of Life (originally introduced by Conway in his now famous 
article in Scientific American) follow very simple rules, yet produce interesting 
worlds with surprisingly complex behaviour. 

Behavioural models have been used in virtual environments, although usually only 
to control a single object in the environment. When more than one independent 
object possesses behaviour, things get complicated quickly. New techniques and 
tools are needed to manage this complexity. 
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6 Distributed Control 

Most software is written in (and most programmers are trained using) procedural 
languages such as Fortran and C. These languages are based on procedural ab
stractions with a single, central locus of control. Unfortunately, this means that 
it is difficult to write software where control is decentralized. This is one reason 
why, among other things, parallel computers and mouse-driven user interfaces are 
difficult to program. 

Because language strongly affects how we can think about solving a problem, the 
single locus of control of procedural languages makes it easier to only think about 
controlling a single object at a time. As a result, most computer animation and 
virtual environments are scripted. In a scripted system control is centralized. Like 
a traditional musical score or a script in a play, the script controls everything that 
happens. As a result there is not much variation in how the virtual environment 
can respond to different occupants. 

The work presented in this chapter is based on two assertions. First, that interesting 
behaviour primarily comes from the interactions between independent actors. The 
music world understands this, and, even more significantly, the neuro-computer 
world understands this (where even the low level behaviours are modeled through 
the connections between simulated neurons). Second, almost in order to even think 
about writing software like this we need languages and tools that provide facilities 
for creating objects with their own locus of control and ways for these objects to 
communicate with each other. 

There has been work done using distributed control to model independent objects 
in computer animation, for example, programming computer-generated birds to 
display "flocking" behaviour. This work has typically been called actor-based ani
mation. It is interesting to note that most of this software has been written in LISP, 
a language that does provide some facilities for distributed control. Unfortunately, 
most of this work has not transferred so readily to the commercial world of proce
dural languages. Luckily, there is a new development in the procedural language 
world .,hat does provide the basic structures necessary to write such software. 

7 Putting the Object back into Object-Oriented Graphics 

The software business is going through a revolution. Object-oriented languages and 
environments provide significant productivity gains over conventional languages, 
and programs written in these languages are easier to debug and maintain. An 
object-oriented language, C++, is even replacing the venerable language C in many 
companies and institutions. One of the major reasons for this is that object-oriented 
languages present a higher level of abstraction: they allow computer programs to 
more closely model the real- world systems they are are trying to simUlate. 

The concepts of object-oriented programming transfer naturally to computer graph
ics and virtual environments. Unfortunately, the term "object-oriented" already has 
a meaning in computer graphics, so we will borrow the term from animation and 
call these systems actor based. For animation, using our earlier terminology, we 
will define each actor to be a filter. 
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Unlike a scripted animation, in an actor-based animation the actors (objects) can 
operate independently (execute concurrently), so control is decentralized. Individ
ual actors receive messages, and respond by sending more messages. Many actors 
will receive their input from other actors, while a few actors will receive their input 
from external events, such as the occupant of the virtual environment, MIDI data 
or even random external inputs, such as the phase of the moon. The output of some 
actors will correspond to objects displayed to the occupant, or sounds, while other 
actors may control the attributes of other objects, such as color or shape, pitch or 
volume. 

Each actor has its own behaviour, determined by the functions encapsulated by 
the actor (the filter function). A set of predefined behaviours can be used, or new 
behaviours can be programmed. The behaviour of the entire system is then deter
mined by how the actors communicate with each other. Because of the interaction 
between actors, a wide range of interesting results can be obtained based on (even 
slightly) different inputs. 

The use of distributed control makes it easier to program much more complicated 
and interesting behaviours. Because each actor has its own locus of control, it is 
more modular. The behaviour of individual actors can be changed without any need 
to modify a centralized script. Instead, actors act out their own behaviour, and only 
synchronize when necessary, using some communication mechanism. 

For example, imagine trying to write a script to control a room full of bouncing balls. 
Now imagine the same script, if the user is allowed to enter the room and randomly 
bat a few balls around. Instead of using a script, each ball should be modelled as an 
actor whose behaviour is to travel along a path until some other object (a wall, or the 
user) gets in its way. Modifying this environment to introduce gravity would not be 
that difficult. We could even play around with the gravitational constant. Another 
posibility would be to make the balls massive enough to gravitationally attract each 
other. In this example, communications between objects is very dynamic. A ball may 
need to interact with an unknown number of other objects, and even objects it was 
not originally designed to interact with, such as the user. Such interactions are very 
difficult to model using the static communication mechanisms (message passing) 
normally used by object-oriented systems. 

8 Communication 

The mechanisms used for communication between actors strongly affects their 
possible interactions, and consequently the behaviour of the entire system. In tra
ditional object- oriented systems the communication paths between the objects are 
largely static (typically determined when the computer program is compiled), and 
are difficult to change when the program is running. 

For a virtual environment we want to be able to make or change the connections 
between actors dynamically. One way to do this is by using a communication mech
anism like the Linda communication paradigm developed by David Gelernter at 
Yale. Linda was originally developed for use on parallel computers [LeIer 90], but 
has been used successfully in other ways (for example, for communication in a 
mouse-driven user-interface manager). 
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9 Linda 

In Linda, communication takes place through an intermediary called a tuple space. 
Each actor in a virtual environment will have a tuple space associated with it, but 
actors are also free to create new tuple spaces, as desired. A tuple space behaves 
like a mailbox: it is a place to get data from and a place to put data. There are three 
primary operations defined on a tuple space: 

ts.out(key, value) 

Place some data into tuple space ts. Each piece of data in tuple space is identified 
by its key, which is a string or a number. The value can be a string, a number, or 
some other kind of data, including another tuple space. There can be more than 
one piece of data in the same tuple space with the same key ( tuple space acts like 
a bag). 

ts.in(key, value) 

Remove some data from a tuple space. Tuple space ts is searched for the specified 
key. If found, the corresponding value is returned as the second argument of this 
function, and both the key and value are removed from the tuple space. If the key 
is not found, then the actor performing this operation blocks until the key is placed 
in this tuple space (by some other actor). 

ts.rd(key, value) 

Copy some data from a tuple space. Like the in operation, except that the key and 
value are not removed from tuple space. 

Message passing in Linda is decoupled in space and time, and so can be much more 
dynamic. Messages are decoupled in space because they are sent via a tuple space, 
and are identified using a key. This is in contrast to message passing, where the 
receiver of the message must be identified explicitly by the sender. Messages are 
decoupled in time, since the sender ofthe message continues executing immediately. 
A message can even be sent to a receiver who is not currently executing; the message 
will wait in the tuple space until it is needed. Since a tuple space can be stored as 
the value of a key, one actor can even tell another actor who to send a message to. 

Linda also uses implicit synchronization, since the receiver of a message will block 
until the desired key is placed in tuple space. This makes communication safe com
pared to something like shared memory, where extra synchronization mechanisms 
(such as semaphores) must be provided to keep the recipient of some data from 
running ahead of the provider. Unlike other implicit synchronization mechanisms, 
namely message passing, Linda allows the sender of a message to proceed inde
pendently of the receiver of the message. This allows the communicating entities 
to execute independently and only synchronize when necessary. Lastly, in Linda 
messages are identified via pattern matching, which supports dynamic forms of 
communication - including name services - that are traditionally very difficult to 
program. These features make Linda significantly easier to use than other com
munication mechanisms, and make it ideally suited to the construction of virtual 
environments. 
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10 Mechanism versus Policy 

It is common for programming environments (including most operating systems) 
to confuse mechanism and policy. For example, even something as simple as the 
number of buttons on a mouse is often fixed by the operating system. A program 
written using such an environment often reflects the preferences of the original 
tool builder more than the programmer. The same thing is happening to virtual 
environments: the facilities provided to the environment builder end up controling 
what the resulting environments look like. It is difficult for tool builders to antic
ipate everything that their tools will be used for, and any policies set by the tool 
builders will end up as often as not hindering more than helping. 

For example, when providing mechanisms to represent objects it is difficult to avoid 
implicitly controlling how they should be represented (what they look like). Should 
a graphical representation of a virtual environment have a floor or walls? Should 
space be cubic, cylindrical, or something else? It is often felt that such policy is 
unavoidable, after all, any mechanism tacitly makes a certain approach easier to 
use, and thus sets a policy encouraging its use. 

The solution is not to avoid policy, but to separate policy from mechanism. The 
components that supply policies should be separated into modules called policy 
agents, which are used by default. One such policy agent is called an oracle. You ask 
an oracle a question and it provides an answer, but you generally don't care where 
or how it got the answer. For example, you can ask an oracle for a representation 
(e.g., for yourself, or for an object you have created) and it will supply one. 

The oracle can make its decision based on things such as the capabilities of the 
underlying hardware. Consequently, the oracle will typically give different answers 
on different systems. For example, a representation supplied on a more capable 
system may be more complex. 

Policy agents such as oracles are stored in Linda tuple spaces (in many cases, policy 
agents are themselves tuple spaces). Since policy agents are identified by name in a 
tuple space, a programmer can replace the default policy agent with a new one. This 
can be done locally (for a single user or group of users) or for the system as a whole. 
Thus, more sophisticated users are free to override policy, while still utilizing the 
base mechanisms of the environment. 

11 Conclusion 

This chapter explores new ways to create virtual environments based on object
oriented programming, distributed control, and Linda. Most significant is the use 
of Linda for communication in an actor-based (object-oriented) system, instead of 
the conventional use of message passing. The use of Linda for inter-actor communi
cation allows a degree of autonomy and flexibility not possible in a message passing 
system, as well as providing the software engineering benefits that originally made 
Linda popular. 

The resulting system, while designed for creating virtual environments, provides 
benefits to many other related applications. For example, this work is directly ap
plicable to the production of animations. Other applications include the production 
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of computer music, scientific visualization, the simulation of complex systems, and 
the construction of user interfaces with behaviour (like the Artificial Reality Kit 
from Xerox PARC). 

12 Art and Technology 

Current tools for building virtual environments often (inadvertedly) control policy, 
and thus strongly affect what the resulting environments (for example, the way the 
CAD-influenced software favors static virtual environments). Thus, policy is often 
set for technological reasons alone. Unfortunately, many policy issues do not have 
technological answers. For example, as technologists, we know little about the best 
way to represent objects. As a result, computer graphics usually strives to produce 
the most realistic images possible, without regard to what aspects of an image are 
important and which are not. Typically, such images are overkill for virtual reality 
(and take too much time to render, anyway). 

Ignoring the computational cost, a less realistic image can often be more visually 
effective anyway. For example, what is the best way to represent a tree? Should 
each leafbe modelled as a set of polygons, resulting in many thousands of polygons 
even for a simple tree? Would the resulting bevy of polygons even look like a tree? 
Would a forest represented this way even give you the feeling of being in an actual 
forest, or are there better ways to convey that? (And how long would it take to draw 
a forest represented this way?) What abstractions are necessary or possible? 

These are issues that artists have been dealing with for centuries [Beirne]. What 
is the best way to represent a tree in a limited medium such as pencil, oil paint, 
or even on a computer? Is there a "best" representation? Artists will even use 
different representations in different situations (how many ways have artists drawn 
or painted trees?). 

As technologists, by blindly embracing reality in our virtual environment, we ignore 
many other posibilities. Why should a virtual environment need to obey any laws 
of space and time? What would a Cubist or Futurist virtual environment behave 
like? Such issues have practical importance as well: can I warp space so that things 
I am interested in are larger or closer to me? If I am attending a meeting in virtual 
space and become bored, can I put time on fast forward? 

Once people start interacting in virtual space, there will be questions about how 
people should represent themselves. Will everyone be virtually beautiful? Do I need 
to keep the same sex or race? Do I need to appear the same to everyone, or can I 
choose what I appear like to different people? Can observers choose what I look 
like? (Can my mother choose to see me with shorter hair? Can my boss choose to 
see me in a suit and tie?). 

Turning the tables, how will virtual environment change our perception of the 
"real" world? Will we be less concerned with appearances, and more with content 
(as can happen through the great equalizing force of a computer mail network)? 
Will the relaxing of normal cause and consequence help things to get quickly out 
of control (again, as often happens on computer mail networks)? How will virtual 
environments reflect society? How will virtual environments change society? Will 
virtuality become the site for post-modern debates on representation? Will the 
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virtual representation of humans change the relationship between mind and body? 
Will the boundary between humans and machines degenerate? Stay tuned. 
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Meta-attributes for Graphics Collection 

Classes 

Peter Wisskirchen 

Graphics systems such as GKS, PHIGS, or GEO++ differ mainly in how graphics entities can 
be grouped into collections and how attributes can be assigned to them. In PHIGS, sequential 
structures are provided to build up multi-level hierarchies; GKS offers a single-level segment 
concept; GEO++ supports a set-oriented approach to handle part hierarchies. Besides the 
concept for collecting graphics primitives, the predominant structuring concept, additional con
structs are used to filter out, select, or group specific subsets of the whole set of graphics 
objects. In PHIGS, the concept of name-sets allows assignment of a set of names to any primi
tive in order definition of filters for each of the three types of attributes, visibility, highlighting and 
detectability. GEO++ allows to define ad-hoc sets by using object identifiers for parts. In GKS-R, 
the revised version of GKS, name-sets are introduced as primary construct to assign attributes 
to output primitives. In this paper we introduce basic mechanisms for collecting graphics enti
ties and for assigning attributes. These mechanisms are defined on a meta-level allowing us 
to extend a low-level kernel and to interpret systems such as PHIGS, GKS-R, or GEO++ as 
special cases of one flexible system. 

1 Introduction and Overview 

Many graphics systems provide mechanisms for naming and selecting graphics 
entities. GKS provides a segment identifier to refer to a collection of graphics prim
itives and to assign the attributes visibility, highlighting, and detectability to a 
segment. Segment identifiers are also used to insert a previously defined segment 
into a newly created one, the open segment, and to delete a complete segment. 
Besides this a pick- id is provided inside a segment to support a second level of 
naming used only for the pick input device [ISO, 1985, Enderle et ai., 1987]. In 
PRIGS, structure names are provided to build up hierarchies, i.e. structure net
works as acyclic directed graphs. Besides this predominant naming concept, how
ever, additional names are used as a secondary concept to select specific subsets of 
a given structure network. The concept of name-sets introduced for PRIGS allows 
to assign a set of names to any primitive. These names may be used to define a 
filter for each of the three types of attributes, called visibility filter, highlighting 
filter, and pick filter respectively [ISO, 1989]. In the specification ofGKS-R, name-
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sets constitute the central naming concept. Conceptually output primitives own 
a set of names as attributes and names are used to filter out specific subsets of 
all previously defined primitives according to various selection criteria based on 
the Structured Query Language (SQL) and to assign attributes to output prim
itives [ISO, 1990]. The object-oriented system GEO++ uses object identifiers to 
describe part hierarchies as predominant structuring concept. Besides this, spe
cial collection classes were introduced to collect parts from different hierarchies 
and to apply attributes to them [Wisskirchen, 1989, Wisskirchen, 1990]. In this 
paper we start with examples of two different collection classes, a set-oriented and 
a sequential one. Both classes differ in the aspect of how attributes are trans
ferred to elements of the collection and how editing can be performed. Then meta
attributes are introduced which can be used to change the default strategy of 
whole-element inheritance of attributes. The definition of the different inheritance 
strategies for attributes allows to define different systems such as GKS-R, PHIGS, 
or GEO++ as special cases of one extensible minimal kernel. SmalltaIk-80 syntax 
is used to describe the examples [Goldberg and Robson, 1983]. The exact specifi
cation of a graphics kernel considered in the following is left open because the 
concept of meta-attributes is rather general. However, the graphics kernel ad
dressed here should fulfill the following requirements for naming graphics entities 
[Kansy and Wisskirchen, 1989, Kansy and Wisskirchen, 1991]: 

• the kernel should be designed in the fashion that all graphicaentities are 
direct accessible by an use of an identifier. 

• all entities should be owner of their attributes. 

• graphics entities should provide inquiry methods to access all information 
(attributes, geometrical coordinates) that may be relevant for the application 
programmer. 

• The object-oriented kernel should know as well graphics instances as mas
ters. The term instance, already introduced in Sketchpad [Sutherland, 1963], 
stands for a geometrically transformed invocation of a repeatedly used graph
ics entity, called master (see also [Foley et al., 1990]. To avoid confusions with 
instances in the sense of object-oriented programming we speak about graph
ics items. We suppose that graphics items own their master as content. 

• Both master objects and graphics items can be edited and the usual graph
ics attributes (color, line style, linewidth, highlighting, detectability, visibility) 
can be assigned to them. Editing of a master object will update all graph
ics instances sharing the master object. Although these requirements sound 
very obvious - - in particular for kernels realized in strictly object-oriented 
environments - neither GKS, nor PHIGS, nor GKS-R fulfill them. 

2 Collecting Graphics Objects 

To start the discussion two examples of how different graphics concepts can be 
supported are given. For this purpose, two different graphics collection classes, 
GraphicsPartHierarchyand GraphicsConnection are defined, the first one 
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to support set-oriented part hierarchies, the second one to model sequential struc
tures. Besides different editing methods, the concept behind the class Graphics
Connection allows to inherit attributes from one component to its successors 
which is not possible in the case of the pure set-oriented part concept supported 
by the class GraphicsPartHierarchy. In addition, the two classes Part and 
Componen t are introduced for the graphics items corresponding to the above classes 
for master objects Ccf. Figure 1). 

Figure 1: Set-oriented and sequential collection classes for master objects (left) 
and graphics items (right) 

2.1 Part Hierarchies 

The typical collection class for part hierarchies may be a non-sequential collection 
class. We call this class GraphicsPartHierarchy. A single primitive or an exist
ing hierarchy, i.e., an instance of GraphicsPartHierarchy may be inserted into 
such a class. Primitives and instances to be inserted are considered as master ob
jects. Usually a transformation (or any other attribute) is applied as an additional 
argument while inserting. The result of the insertion process (and the resulting ele
ment ofthe collection class) is a graphics item, in our case a part. The geometrically 
transformed graphics item is invoked for display only if its hierarchy is explicitly 
posted on a workstation. In Smalltalk-80 syntax with 

myHierarchy , GraphicsPartHierarchy new 

a new empty hierarchy is created. 

aMaster , PolyLine points: nPoints 

generates a master object which is inserted together with a transformation a Trans
formation into the hierarchy 

aPart, myHierarchy put: aMaster 
transformedBy: aTransformation. 

A part knows its master which can be inquired by: 

aPart content 

and its owner which may be inquired by: 

aPart root . 
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A part knows also its access path, an indicator, delivered by: 

mylndicator , aPart path. 

The access path can be used to inquire the part from its hierarchy: 

myPart , myHierarchy part: mylndicator. 

As mentioned, it is allowed to insert instances of GraphicsPartHierarchy so 
that higher level hierarchies may be build up. The access to parts deeper in the 
hierarchy is possible by using a path name consisting of a sequence of indicators 
(indl, ind2, .. ). This principle is described very detailed in [Wisskirchen, 1990]. 

myElbow 

Figure 2: A robot arm as a typical example of a sequential graphics strUGture 

2.2 Connectivity 

By connectivity, we understand a concept to model and support the connection of 
components in space. Connectivity is seen as a directed (non-symmetrical) relation 
of type connect(a,b) between graphics items. This relation should ex-press that b 
is connected with a (in the sense of attached with). In connectivity, n objects are 
attached to each other, so that a se-quence of objects on the same hierarchical level is 
created. A well known example is the robot arm [ISO, 1989] with components upper 
arm, elbow, lower arm, wrist, hand defining a sequence to express the connectivity 
relation (cf Figure 2). Note that PRIGS supports exclusively this type of sequential 
structure, although PRIGS is often used to model (set-oriented) part hierarchies 
which leads then to an over-specification. To supply the application programmer 
with a connectivity model, a sequential collection, the class GraphicsConnection, 
is introduced. The basic methods of GraphicsConnection are described by the 
following example: 

robotArm , Connection new 
myUpperArm , robotArm add: upperArm transfo~mation: to 
myElbow , robotArm add: elbow transform: tl 
myLowerArm, robotArm add: lowerArm transform: t2 
myWrist , robotArm add: wrist transform: t3 
myHand , robotArm add: hand transform: t4 . 
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The result of the sequential insertion process is a graphics item, in our case a 
component. Very similar to the non-sequential case, a component knows its master 
which can be inquired, for example, by 

rnyWrist content 

and its owner inquirable by 

rnyWrist root . 

A component knows its access path, in the sequential case an integer value delivered 
by 

myIndicator , myWrist index 

which evaluates in our example to 4. The access path can be used to inquire the 
part from its hierarchy 

myCornponent , robotArrn part: myIndicator. 

As mentioned, it is allowed to insert instances of GraphicsConnection so that 
multi-level hierarchies can be build up. The access to parts deeper in the hierarchy 
is possible by using a path name. 

It should be noted that also mixed hierarchies can be constructed, i.e., it is allowed 
to insert a master object that is instance of GraphicsConnection into a part 
hierarchy and vice versa. 

3 Meta-attributes 

Meta-attributes are introduced to control the inheritance strategy of attributes for 
whole-member relations, i.e., these strategies describe how an attribute applied to 
a graphics collection class is transferred to its parts or components. 

3.1 Default Strategy 

Default strategies are not as important as in conventional graphics systems be
cause meta-attributes allow to change the strategy very easily. Nevertheless, there 
should be a predefined default strategy. To define the default strategy four groups 
of attribute types are introduced: 

• the first group contains all attribute types to describe color, line style, line-
width, shading. 

• the second group contains detectability and highlighting. 

• the third group contains visibility. 

• the fourth group contains transformations which are considered to be at
tributes. 
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Attributes of the first group, when assigned to a whole, are applied to parts or 
components if no attributes were assigned previously and directly to a part or 
component. The same default strategy is valid for inheritance from parts to subparts 
deeper in the hierarchy. 

Consider, for example, the following assignments: 

myElbow color: colorl 
robotArm color: color2 

As a result, all components except myElbow would be receive color2 as new color. 
Attributes ofthe second group are not inherited at all. Thus, when a whole is set to 
detectable it becomes detectable as a whole without changing the detectability state 
of any sub-component. Attributes of the third group will be inherited in any case to 
the elements of the collection applied to, making all elements visible or invisible. 
Transformations are inherited from a whole to its parts or components. Thus a 
rotation applied to robotArm would apply the rotation to the whole arm. In the case 
of sequential structures, however, a transformation applied to a component would 
also effect the succeeding components. Thus, when we change the transformation 
t2 to t2new (a rotation) by 

myElbow transform: t2new 

then everything below the elbow rotates (see Figure 3). 

myElbow 

myElbow 

Figure 3: Rotation of the parts connected with Elbow 

3.2 Controlling the Strategy 

In many cases it is highly desirable do change the default strategy described above. 
Thus, it may be convenient, for example, to change the color of all elements of a 
collection regardless of color attributes assigned previously to parts or components. 
This leads to the requirement to control whole-member inheritance by additional 
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capabilities. To control the strategy, special operations are provided which we call 
meta-attributes. We do without listing all different types of strategies but give some 
example illustrating the idea. With 

aSet strictlnheritanceFor: 'detectability' 

all elements of the receiver are set to detectable regardless of previous assignments 
to single elements. The default case, mentioned above, can be achieved by 

aSet nolnheritanceFor: 'detectability' . 

With 

aSet weaklnheritanceFor: 'detectability' 

all elements of the set are set to detectable if no specific assignment was applied 
to a single element previously. An additional possibility to define the inheritance 
strategy is to see it as a mode. In Smalltalk-80, such a modal assignment could be 
modeled by a class method. Thus, with 

Color strictlnheritance 

we can define the way of how color is inherited. This rule will take place for all 
subsequently assigned color attributes. To control the inheritance strategy the 
operations introduced above have to be supplemented by similar rules valid for 
sequential collections of class GraphicsConnection, for example, 

aSequence horizontallnheritanceFor: 'color' 

will inherit color from one component to the succeeding ones (as in PHIGS). 

4 Discussion 

We have introduced flexible ways to define inheritance of attributes by introducing 
meta-attributes. These strategies are realized as methods of graphics collection 
classes. In this context the question about the overall semantics of graphics col
lection classes will arise. In GKS collections (segments) are defined to delete and 
insert them and to apply three types of attributes to them. In GKS-R collections 
filtered out by name sets are used to apply all type of attributes and to post them 
to specific workstations. In PHIGS collections (structures) are essentially used as 
master objects to be referred by other hierarchies; collections filtered Qut by name
sets are used to apply the attributes detectability, highlighting, visibility. GEO++ 
allows to filter out collections to apply attributes to them or to edit them, collections 
are also used as master objects. All these operations are more or less shortcuts to 
apply attributes. In GEO++, however, some additional functionality of collections 
was defined allowing, for example, to assign specific pick sensitive areas to collec
tions as a whole. In general, the question arises what additional semantics aspects 
can be assigned to a whole with a well defined meaning for any general purpose 
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graphics system. This seems to be still an open question. Aspects valid for a graph
ics collection which are application specific and not general can be integrated into 
a general object-oriented graphics systems by defining subclasses of the collection 
classes shown in Figure 1. Conclusion The definition of different inheritance strate
gies for attributes allow to describe different systems such as GKS-R, PRIGS, or 
GEO++ as special cases of one extensible minimal kernel. Therefore this type of 
strategies should also be considered when future standards will be defined. 
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A Co-operative Graphical Editor Based 

on Dynamically Constrained Objects 

Zs6fia Ruttkay 

A co-operative graphical editor is introduced as an efficient drawing tool for structural and 
functional design. The components of the artifact being designed are represented as objects. 
A design can be modified by direct manipulation of the 2D graphical presentation of its com
ponents. The criteria for consistency of a drawing are declared in the form of abstract rules, 
prescribing what relations should hold for which object instances in the drawing. In the course 
of the drawing process, constraints are generated from the general prescriptions and resolved 
dynamically, ensuring the given state of the drawing. The editing operations are defined with 
respect to the constraints. The graphical editor assures the consistency of a drawing on the 
basis of a specific constraint satisfaction mechanism. The editor is discussed with reference 
to the specific application domain of interactive design of planar welding fixtures. However, the 
basic concepts and the constraint satisfaction mechanism are general enough to be used as a 
framework for other domain-specific editors. The modular and open architecture of the editor 
assures adaptivity to other application domains. 

1 Introduction 

1.1 The Aim: a Co-operative Graphical Editor 

There is a wide gap between the two extremities of the general drawing toolkits, 
such as MacDraw, and the sophisticated bulky softwares dedicated to specific needs, 
such as AutoCad. The former offers a set of drawing primitives too general for 
engineering applications, while the latter provides an environment with drawing 
conventions of an engineering field. However, in both cases: 

• either the representation of the design is not separated from its graphical 
presentation at all, or it is not easily accessible by the user or an application, 

• the drawing conventions and the semantics of the editing operations are wired 
in, cannot be defined and changed by the user. 
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Our concern is: 

• to clearly separate the representation of a design and its graphical presenta
tion, allowing the conventions for the latter to be adjusted, 

• to make it possible to declare and tailor the criteria of consistency of a drawing, 

• to support the efficient generation and exploration of consistent drawings. 

We will not dwell on the rather technical issues of the first two points, but on the 
services below, closely related to editing: 

• Error-proof drawing: In the entire course of the drawing process the con
sistency of the drawing is assured. The user can perform only such editing 
operations which do not violate the consistency of the drawing. What has 
been drawn so far and the general criteria of consistency determine what can 
be done in a given position ofthe drawing; the input by the user is interpreted 
accordingly. Only certain inevitable temporal inconsistencies are allowed ex
ceptionally. 

• Co-operative drawing: Each input by the user is interpreted in the context 
of the drawing of that very moment, and the appropriate consequences are 
generated and carried out automatically by the graphical editor. The user is 
relieved from the burden of completing and prettifying drawings. 

• Explorative drawing: The user can explore - actually see - the consequences 
of a hypothetical modification, before committing himself to it. The graphical 
editor also provides feedback about the feasible range of a modification. 

1.2 The basic technique: dynamic generation and satisfaction of constraints 

Constraints [LeIer, 1988] have proved to be a good basis for the purposes of interac
tive graphics. The prescriptions for a drawing are given as relations - constraints 
- on characteristics such as size, relative and absolute location of the graphical 
elements. A drawing is consistent, if all the constraints hold. The modification 
of a drawing may result in the violation of some constraints. A constraint satis
faction mechanism provides the automatic correction of the drawing, by altering 
certain further values in such a way that all the constraints hold again. Sketchpad 
[Sutherland, 1963] was the first system based on constraints to define and main
tain geometric figures. When the consistency of a drawing could not be achieved 
by simply solving the constraints one after the other, the iterative numerical tech
nique of relaxation was activated. ThingLab [Borning, 1979, Born'ing, 1985] was 
developed along similar lines, but with an extensible set of graphical objects and 
constraints. Magritte [Gosling, 1983] is an interactive graphical layout system with 
the power of transforming a constraint graph containing cycles into an equivalent 
one which does not, and hence can be solved by the method oflocal value propaga
tion. IDEAL [van Wyk, 1982] is a component of a typesetting software, which can be 
used to secure the prescribed position and sizes of graphical objects in documents 
as constraints. Juno [Nelson, 1985] is a constraint language with a limited set of 
constraints on points, but with the means of representing constraints graphically. 
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In these applications the following traits are common: 

• The constraints should be given in advance and can be altered one by one, 
only if explicitly requested by the user or an application program. As an 
alternative, constraints referring to different attributes of one object only are 
given as abstract constraints for all instances of a given object class. 

• Constraint satisfaction is used in a "follow up" manner, to restore the consis
tency ofthe drawing after modification. 

In order to overcome these shortcomings, we took the following novel approach: 

• Constraints are prescribed in advance and in an abstract way, in the form of a 
fixed set of rules circumscribing the objects involved and giving the constraint 
on them. Objects belonging to different classes can be constrained. 

• The consequences of a modification by the user are computed by generating 
the relevant constraints dynamically, according to the abstract rules and the 
instances present. 

• Beside the traditional follow-up way, constraints are used also to prevent 
modifications which would result in unresolvable inconsistencies. 

Recent research on general, incremental constraint satisfiers focuses on how to 
improve a given solution if the set of constraints has been altered [Freeman-Benson 
et aI., 1990]. Our emphasis is rather on the generation of the constraints driven 
by the changes in the drawing, than on the power of the incremental constraint 
satisfaction technique. Constraints have been used with objectives similar to ours 
by syntax-based text and program editors [Carter and LaLonde, 1984, Logger, 
1988] and user interface toolkits amalgamating object-oriented and constraint
based techniques [Hill, 1990, Maloney et al., 1989, Myers, 1989, Szekely and Myers, 
1988, Vander Zanden and Myers, 1990]. While in these recent graphics systems 
constraints are directed and declared as characteristics of object classes, in our case 
non-directed constraints are used. They are prescribed separately of the declaration 
of object classes, in the form of rules. 

1.3 The architecture: potential for a range of applications 

In general, a graphical editor is an appropriate tool for design tasks with the 
following specifics: 

• The artifact should be designed by synthesizing components of well-defined 
types. 

• The feasibility of the design is expressed in terms of prescriptions for the 
geometry and topology of the components. 

• The relevant aspects of the components can be presented in 2D. 
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presentation system 
definitions parameters J 

constraint object generation 
rules classes 

constraint predicate 

) definitions definitions 

constraint generation and 

J satisfaction engine 

Figure 1 : The layers of the modules of the graphical editor 

Modifiable 

definitions 

fixed kernel 

The closed, unchangeable "engine" of our editor is based on a specific constraint 
satisfaction mechanism, which narrows down the possible fields of application: 

• The constraints should refer to coordinates of specific points of graphical ob
jects or system variables. System-variables - e.g. critical limits on distances -
are set before the drawing process is started, and afterwards they are treated 
as constants. 

• The coordinates of the graphical objects can change continuously. 

• Each constraint is a linear equation or inequality. 

• By an equation either only the x or only the y coordinate of a point is referred. 

There are several application domains - mechanical engineering and architectural 
design, design of electrical circuits - which meet the above requirements: lines 
and a set of graphical symbols are used to present a design, and collinearity and 
ortoghonality are key composing criteria. The modular and open architecture of 
the editor provides basis for a range of applications. The declarations needed to 
define an editor for a specific design application are stored in separate modules, all 
of which can be modified (see Figure 1): 

• By changing the presentation definitions and/or the system parameters, the 
graphical editor can be tuned to the needs of design environments with differ
ent drawing conventions and design parameters. 

• By changing the definition of the constraint generation rules and/or the object 
classes, the generic design criteria and the choice of components can be altered 
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• By modifying the definition of constraints, the editor can be suited for domains 
with different design concepts. 

Further on, we will discuss an editor with declarations suited to a specific applica
tion domain. However, the same concepts and mechanisms apply for other possible 
editor instances for different design fields. 

1.4 An application: interactive design of welding fixtures 

Our work was induced by the needs of the design of fixtures for welding 2D frames 
used for building buses. The details of the design task are discussed in [Markus 
et al., 1990]. In a nutshell: a welding fixture is a lattice-like planar construct of 
ortoghonal bars which support clamping and positioning devices. The clamping 
and positioning elements are selected from a modular set. Some modules have 
continuously adjustable parts. The fixture body consists of a rectangular frame and 
5-20 bars. On one bar there can be several clamps and positioning elements. The 
design task is to produce a fixture to hold the bars of a given bus-frame during the 
process of welding, see Figure 2. 

The criteria for the fixture to be designed are of three different sources: 

• general prerequisites for welding fixtures, 

• numerical parameters referred by the general prerequisites, 

• specification of the given design task, prescribing the possible location of posi
tioning and clamping devices and a set of rectangular forbidden areas which 
should be avoided by the fixture body. 

The design criteria refer to: 

• the structure of the design (e.g. the fixture body should be built of ortoghonal 
bars, bars should support the clamping elements), 

• the topology of the construction (e.g. no pending bars are allowed, fixture bars 
should avoid forbidden areas), 

• the geometry of the components (e.g. upper and lower limit on the distance of 
neighbouring bars and length of bars). 

1.5 An Illustrative Example 

Let us assume, that in Figure 3.a. the adjustable c clamp should be positioned on 
the b fixture bar in order to "push" the a bus bar. The coordinates of the E and C 
points should meet the set of equations and inequalities in Figure 3.b. They should 
not be given explicitly, but are generated by the editor from general prescriptions 
such as "a clamp should always be positioned on the middle line of its supporting 
bar". 
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bus bar 
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rectangular fixture 
frame 

fixture bar 

clamping element 

element 

Figure 2: The graphical presentation of the fixturing task and the components of 
the fixture 

The graphical editor assures the following: 

• If the b bar is neither too close nor too far from the a bar, that is, 

6. Bx - Ax - m - 0.5 * v :::; iI, and 

7. Bx- Ax- m - 0.5 * v 2: 12 , 

then any E point on of the b bar for which (5) holds can be selected. The x 
coordinate ofE is adjusted by the graphical editor, in accordance with (1). That 
is, the user does not have to position the c clamp accurately on the middle line 
ofthe b bar . 

• The coordinates of C are computed automatically, that is the adjustable part 
will be of the right size. 
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x 

l. Ex = Bx 

2. Ex - Cx - m:::: h 

3. Ex - Cx - m 2: 12 

4. Cx = Ax + 0.5 * V 

(a) (b) 

Figure 3: (a) The c clamping element should be positioned by giving the coordi
nates of its E and C pOints. (b) The set of equations and inequalities to be met by 
the drawing. m, d, v, h, and b are system parameters 

If the user moves the b bar supporting the c clamp along the x direction, then: 

• The c clamp moves too, remaining on the bar. The adjustable part of c is 
readjusted continuously. 

• The b fixture bar can be moved neither too far from nor too near to the a bus 
bar. The two extreme positions computed by (6) and (7) serve as "bumpers". 

In the rest of this chapter we explain the novel functionalities of the editor and 
the basic concepts of its model. The chapter is structured as follows: section 2 
is devoted to the modelling of design prescriptions in terms of object classes and 
constraints. In section 3 the editing operations are discussed. In section 4 we point 
out the necessity of constraint satisfaction in addition to object-orientedness, we 
discuss possible extensions and issues requiring further research, and finally we 
sum up our results. Further details, such as means provided as alternatives to 
direct manipulation ofthe drawing, the usual ''householding'' services of the editor 
as well as the technical issues of interaction, visualization and the implementation 
in Common Lisp are covered in [Ruttkay, 1990]. 

2 Constrained objects 

2.1 Object classes and instances 

The structural design prescriptions are captured by the definition of given graphical 
object classes, modelling the simple and compound components of the artifact being 
designed. The structure of the objects of the given class is defined by a list of typed 
attributes, see below. The instances of a graphical object class - graphical objects, 
for short Q are given by assigning values to the attributes. The value of an attribute 
is either an object, or a list of object instances of a class given as the type of the 
attribute. 
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class: horizontaLbar 
startpoint: point 
endpoint: point 
stating_bar: vertical...bar 
ending_bar: vertical...bar 
clamps: li s t 
clamp-seats: list seat 
joining_bars: list vertical...bar 

For each object class a procedure to generate the graphical presentation of the 
instances is given, with reference to general drawing conventions (e.g. line width, 
filling patterns, symbols) and the specific value of some attributes of the object 
instances (e.g. location, size of changeable parts). The graphical object classes form 
a hierarchy, inheritance of attributes as well as of presentations is supported. 
The user can identify graphical objects only by selecting their presentation on the 
screen. Because of the one-to-one correspondence of the graphical objects and their 
presentation, further on we will use the notion "graphical object" for the objects 
themselves as well as for their presentation. From a given object others can be 
referred to in any depth, along chains of attribute names. 

The two non-graphical object classes model numbers and points. The number 
class is defined according to the specific constraint satisfaction mechanism ap
plied. An object instance of the number class has the following attributes: 

• current_value, which can have a real number as value, 

• range, which can have a closed, finite or infinite interval ofthe real numbers 
as value, 

• old_value, which can have a real number as value, 

• status, which can be "unknown", "changeable","changed" or "fixed". 

The essential role of range in satisfying constraints will be discussed in section 
2.3. The status attribute is used to guide the resolution ofa conflict. For the sake 
of brevity we will not explain the related details neither the rather technical issues 
of the role of old_value in exploring a drawing. 

The point objects are given by the x and y coordinates, both attributes are of 
number type. 

2.2 Constraints 

All the design prescriptions referring to the topology and geometry of the design 
components are given in the form of constraints: linear equations and inequali
ties over numerical design parameters and the coordinates of specific points of the 
graphical objects. The characteristics of the constraints were listed in section 1.3. 
A drawing presenting a design is consistent, if all the constraints prescribed for the 
components of the design hold. 

The constraint graph consists of nodes corresponding to coordinates of points of 
graphical objects, to system parameters and to constraints. Each node representing 
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(mindistH * MINBARLENGTH*I 

Figure 4: The constraint expressing that ''the length of the horizontal bar should 
exceed a given limit". The limit is given as the value of the *MINBARLENGTH* 
design parameter 

a constraint is joined to nodes representing its variables. The arcs are not directed, 
indicating that any of the variables of a constraint can play the role of output, while 
the rest oftheni serve as input, see Figure 4. 

The consistency of the drawing is preserved by a specific constraint satisfaction 
mechanism, based on the following characteristics of the constrain graph, similar 
to but weaker than the usual exclusion of cycles: 

• At any stage of the drawing process, the value of at most two of the numbers 
referred to by a constraint can be changed. 

• If a number defines the value of another number via a chain of equalities, 
then this chain of constraints is unique. 

• If a number defines the value of another number via a chain of equalities, 
then there cannot be given a chain of inequality constraints between the two 
numbers. 

How and when is the constraint graph generated? This is a key issue, as in most 
cases the modification of the drawing implies modifications of the constraint graph. 
The following specifics of the constraint graph make possible the rule-based gener
ation of its relevant subgraphs: 

• The entire constraint graph consists of small isomorph subgraphs: the same 
constraints are prescribed for different tuples of object instances. 

• The vast majority of the constraints are inequalities. 

The first characteristic suggests that the entire constraint graph can be generated 
by a small set of rules prescribing what objects should be constrained in what way, 
referring only to names of constraints, object classes and their attributes, not to 
individual objects. The second characteristic assures that for the propagation of a 
changed value only a relatively small part of the entire graph should be known 
explicitly. 

We took the approach of generating the relevant part of the constraint graph when
ever. needed, instead of storing and updating it permanently. The relevant sub
graph of the constraint graph is built up on the basis of constraint generation rules. 
A constraint generation rule defines the objects to be constrained and the 
constraint itself. The left hand side of such a rule specifies the objects involved, 
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by prescribing a conjunctions of predicates on objects. On the right hand side the 
name of the constraint and a list of references to point coordinates of objects and 
system variables are given. E.g. the design prescription "the fixture bars should 
avoid the forbidden areas" for horizontaLbar instances is formulated by the two 
rules below. The predicates on the left hand side of the rules identify the critical 
forbidden area - that is, the nearest one to the bar on each side. The constraints on 
the right hand side prescribe that the bar should avoid the nearest forbidden area. 

rule forbidden_area_l 
if (is_a horizontal..bar B) and (nearesLlefLarea A B) 

~en (mindist (point-x (startpoint-bar B)) 
(point-x (thirdcorner-rectangle A)) 
0) 

~rule forbidden_area_2 
~ (is_a horizontal..bar B) and (nearesLrighLarea A B) 

·.then (mindist (point-x (firstcorner-rectangle A) ) 

J 

~! (point-x (startpoint-bar B) ) 
0) 

The instance of a rule is produced by binding the variables in the rule in such a 
way that the predicates on the left hand side hold. An instance of a rule holds if the 
appropriate constraint holds. A rule holds for a given drawing if all the instances 
of the rule hold. A drawing is consistent if and only if all the constraint generation 
rules hold. 

2.3 Constraint satisfaction by interval propagation 

Whenever a drawing has been modified, the constraint propagation mechanism 
enforces that all the prescribed constraints hold. This requires two services: 

~, • assuring that the conflicts caused by the user's modification of the drawing 
~) can be resolved, 

• updating the currenLvalue of the constrained numbers in such a way that 
the constraints hold. 

The constraints are reinforced by the widely used method of local value propagation 
[Steele, 1980], taking into account the equalities only. However, the case should be 
avoided when there is no splution of the set of constraints due to a modification 
by the user. The success of the .\\cal propagation of a is provided by 
the use and update 0-. ranQ'~ of the constrained 
of the given set of constraints on each number instance are their range 
attribute. The range of a number instance is the interval of exa:ctly those reals, 
which are feasible candidates for the curren Lval ue of the number. Choosing any 
real from the range as the new currenLvalue, the constraints can be resolved. 
The range of the number type objects is updated too by the so-called local interval 
propagation constraint satisfaction mechanism, which is a new generalization of 
the local value propagation to intervals of real numbers. In updating the range 
of objects, both the equalities and inequalities are taken into account. In [Ruttkay, 
1990] a formal discussion of the method is given, with the proof of its applicability. 
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Constraints operate locally, relying upon the status, currenLvalue and range 
of their nwnber-type argwnents. As the constraint graph is not stored, the con
straint satisfaction mechanism has to generate the subgraph of those constraints 
which are relevant in the propagation of the consequence of a change of a given 
currenLvalue on both the currenLvalue and range of other objects. The gen
eration of the affected constraints and the value/range propagation are performed 
in an interwoven way. Here we characterize the three procedures maintaining the 
consistency of the drawing, fully given in [Ruttkay 90]. 

Whenever the currenLvalue of an object is changed - assuming that the new 
value is within the range of the object - the value-propagation procedure is acti
vated. It identifies the objects which are constrained by equalities with the given 
object, and their currenLvalue is adjusted. The adjustment of the range ofob
jects which are constrained by an inequality and a chain of equalities with the given 
object is performed by the interval-propagation procedure. 

Whenever a new object is inserted, the range ofthe coordinates of its points should 
be computed. This is done by the interval..computation procedure, by identifying 
and taking into account all the constraints prescribed for the new object and the 
already existing ones. 

3 Editing operations 

The user can edit a drawing by directly manipulating the graphical objects in the 
drawing. We will simply refer to selection of points and objects without going into 
details such as the selection of an object versus its components, or the selection of 
only one of the coordinates of a point, as the other one is already determined by 
what has been drawn before. 

3.1 Drawin~ new objects 

" New simple-gtaphical objects can be drawn one after the other. The drawing takes 
place as a se<wence of selections of already existing graphical objects or points of the 
drawing. Th! selected objects are assigned to appropriate attributes of the object 
to be drawn. For each object class, one or more lists of attributes are given. The 
series of selected objects should confirm with the type of attributes in one of the 
given lists. The graphical editor can uniquely decide which attribute list is being 
used after at most the second selection by the user, see Figure 5. After the user 
has selected a point, it is decided by the editor if the selection can be accepted. 
Namely, the range of the attribute in question is computed, and it is tested if the 
selected coordinate value is in the range. If so, the selection is accepted and the 
new currenLval ue is propagated. Ifnot, the selection has to be repeated. 

3.2 Moving objects 

Objects can be dragged along two, ortoghonal directions by grabbing any of their 
points. The editor assures that an object can be moved only to such a new position 
that the consistency of the drawing can be restored. On the basis of the range of 
the appropriate coordinates of the object being moved, an interval is computed. The 
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Figure 5: a) The vertical bar e is drawn by selecting its endpoint P on the bar c. 
Because of the prescriptions for bars, only points of c within the intervals Be or DE 
can be selected as P. As soon as P is selected by the user, the editor automatically 
computes Q and draws e. b) It is not sufficient to select the Q endpoint of e on 
d, because from the selected point a vertical bar can be drawn both upwards and 
downwards. As soon as the user has started to draw the line, the ambiguity is 
eliminated and the editor ''finishes'' the drawing just as in the previous case. Note 
that from point S only one joining bar on d can be drawn ' 

b 
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Be 

a 

Figure 6: The e vertical bar can be moved horizontally within an interval: the P 
pOints should remain within the Be interval. The forbidden area t acts as ''bumper'': 
Point R, the grabbed point of e, cannot be moved to S. The forbidden area t cannot 
be jumped over by moving the e bar 

endpoints of the interval act as "bumpers" till which the object can be moved, see 
Figure 6. The topology of the drawing cannot be changed by moving an object. E.g. 
a bar cannot ''jump over" a forbidden area. 

The exploration of the drawing is supported by two means: 

• The extreme positions till the object can be moved is visualized (highlighted) . 

• The consequences of the current position of the object being moved on the 
current-value ofthe other objects are computed and visualized, see Figure 
7. Hence the user can see what the entire drawing would look like ifhe moved 
the object to its current position. 
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Figure 7: When the d bar is being moved downwards, the clamp and seats on 
d should move with the bar. The joining bar f is being stretched. The extreme 
positions for d are determined by the minimal distance of d from bar e and the 
maximal length of bar f 
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As soon as the user selects the final position, the range of the coordinates of 
the points of the objects is updated. If the user quits, the old_values and the 
corresponding drawing are restored. 

3.3 Deleting objects 

After deletion the remaining drawing should be structurally consistent. This is 
provided by defining the preconditions and consequences of deletion for each object 
class in the form of delete methods. E.g. a bar can be deleted only if there are no 
other bars joining to it. If a bar is to be deleted, then all the clamps on the bar 
should be deleted as well. 

Note that the constraint graph of the drawing does not shrink necessarily in parallel 
with the deletion of objects. New rule instances may prescribe new constraints 
instead of the ones which have been eliminated. In most of the cases it can be 
proved that the new constraints hold. We will return to this question in section 4.2. 
In all cases after the deletion of an object the range of the coordinates of points of 
the remaining objects is recomputed. 

4 Discussion 

4.1 Why was object-orientedness alone not sufficient? 

At the workshop a recurring question was: "Why did you take an approach other 
than pure object-orientedness? All you presented could have been done by using ap
propriate objects and message passing or delegation mechanisms." How to answer 
this question in my case? 

: ...... :::, 
Bye and large, the object-oriented paradigm lends itself naturally to model dom~~s: 
where objects can be classified in such a way that the behaviour of object instances I 

can be expressed in terms of classes and instance-specific attributes. In our field 
the effect of an editing operation highly depends on the relative position of the 
element to be edited to certain other elements of the drawing. If insisting on an 
object-oriented approach, one should identify e.g. the forbidden area nearest to a 
bar by making the bar sending messages to all forbidden areas in order to find 
out their position. To avoid the re-execution of this kind of exhaustive search for 
critical constraining objects, each object could have direct pointers to the critical 
objects. However, in this way the objects themselves would grow large, with much 
redundant and only occasionally used information. 

Constraints themselves could be defined and implemented as objects. We pointed 
out in section 2.2 that an editing operation has effect only on a small subgraph 
of the entire, rather bulky constraint graph. It would be inefficient to store and 
update all the constraints all the time. For bi-directional constraints it would re
quire extra effort to prevent oscillations. Moreover, the instantiation of constraints 
- which is needed for several constraints whenever a graphical element is in
serted/deleted - would require the extensive search discussed above. Defining the 
constraint generation rules themselves as objects would result in objects alien to 
real object-orientedness: the rule objects would have an overall view of and access 
to the real objects modelling graphical elements. 
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Our main claim for taking the approach of rule-based generation of constraints is 
the conceptual clarity, transparency and adaptivity of the declarative rule format. 
A new requirement can be introduced by adding a single new constraint generation 
rule, while in an object-oriented application all the object classes involved should 
be redefined. The declaration of a new constraint generation rule can be easily done 
by and end-user, while the redefinition of the affected object classes would require 
a system developer. A purely object-oriented approach would make it very difficult 
if not impossible to filter out a declaration of the prescribed constraints: an n-ary 
constraint would be mentioned in the description of all the n object classes. 

Altogether: an object-oriented hacker possibly could implement most of the func
tionalities of our editor. However, that would require a solution far from the natural 
and easy style of object-oriented programming, and it could not be done in the ortho
dox way of complying to data hiding. Moreover, the rule-based approach has some 
advantages which could not be provided by any object-oriented implementation. 

4.2 The scope of constraint generation rules 

The prescription stating "the distance of two neighbouring parallel bars cannot 
exceed 60cm" should be met by any finished drawing. However, there are drawings 
- see Figure 8. - which could not be produced if this prescription were taken into 
account in all previous stages of the drawing process. In general, the constraint 
generation rules are of two kinds: 

• structure-dependent ones, 

• structure-independent ones. 

The violation of a structure-dependent rule can be overcome by extending the 
drawing. In contrast, if a structure-independent rule does not hold, then it will not 
hold for any extension of the given drawing. In our application the quoted rule is 
the only structure-dependent one, which is taken into account only on the explicit 
request of the user. 

The problem of scope of the constraint generation rules should be tackled in a more 
general and sophisticated way. One possibility is to chunk the constraint generation 
rules. As the drawing evolves, further chunks are added to the set of rules to be 
taken into account. The inclusion of a chunk of rules can be triggered by the user 
directly, or by an editing operation indirectly. Another way to handle the problem is 
to introduce a constraint hierarchy [Freeman-Benson et al., 1990]. The constraints 
with the greatest weight must hold, while the others may be relaxed. The weights 
change as the drawing evolves. 

4.3 Non-binary constraints 

The editor cannot handle constraints with more than two numbers of changeable 
status. If a constraint can be resolved by changing the current-value of more 
than one numbers involved, then a decision should be made. 
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Figure 8: If no inconsistent intermediate states were allowed, this drawing could 
not be produced: the AG and GB distances all exceed the limit allowed. The 
graphical editor should only detect whether two neighbouring bars are too far from 
each other, and suggest the user to insert a further bar inbetween 
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According to the literature on constraint programming systems a conflict is resolved 
always by selecting one value to be changed, in one of the following three ways: 

• the user is asked to decide at each occasion, 

• the system decides randomly or by numerical considerations, 

• the system decides but the user can override its decision. If the user is to 
decide, then the graphical editor should support backtracking to all previous 
stages where a conflict could have been resolved. A more adequate solution is 
if the user declares the preferences among different object classes based on 
application-specific knowledge. The editor chooses the value of an attribute of 
the least preferred object to be changed automatically. 

4.4 Non-linear constraints 

The linearity of the constraints provides that the set of feasible candidates for a 
value is an interval of real numbers. The interval propagation mechanism exploits 
only this consequence of the linearity of the constraints. Hence the linearity can 
be replaced by some weaker restrictions on the constraints, also assuring that 
the range of feasible values is an interval. One possible such a restriction is the 
monotonicity of the constraints in each oftheir variables. 

4.5 Missing operations: search, cut and paste 

There are no means to select other subparts of a drawing than a simple or compound 
object. It would be handy to have means to characterize, select, cut and paste other 
subparts of a drawing. The characterization of subparts of a drawing can be given in 
terms of object classes and attribute values, or in terms of concepts not provided by 
the object-oriented model, see Figure 9. In both cases, replacement of a subpart by 
another may produce an inconsistent drawing. The incremental and local constraint 
satisfaction method of the editor is not powerful enough to restore the consistency 
of the drawing. Only the violated constraints can be detected, and then the user 
has to correct the drawing. 

4.6 Conclusions 

A co-operative graphical editor has been presented with the following main novel 
services: 

• preventing errors, 

• support for exploration of a drawing, 

• co-operative generation of consequences. 

The above services are provided on the basis of dynamic generation and satisfaction 
of constraints on coordinates of graphical objects. Our approach has new features 
compared to object-oriented and constraint-based drawing systems and user inter
faces: 
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Figure 9: The bars within the selected rectangle on the left are copied in to 
the selected rectangle on the right. Because the copied subpart is proportionallly 
distorted, the constraints prescribed for distances and length of bars do not hold 
necessarily in the right part 

• the constraints "glueing together" object instances are declared in the form of 
abstract rules, 

• the relevant constraints are generated when needed on the basis of the ab
stract rules and the current contents of the drawing, 

• the generation of constraints is triggered by changes of attribute values of 
existing objects as well as by insertion/deletion of objects, 

• the "overall effect" of the constraints on the current object instances is com
puted by the novel constraints propagation mechanism and stored for each 
object instances, making it possible to prevent unresolvable conflicts. 

A prototype graphical editor for a specific application domain has been implemented 
in CommonLisp. The modular, open architecture, the generic concepts used to spec
ify the application-dependent knowledge, and the not strict requirements on the 
individual constraints and the structure of the constraint graph guarantee that the 
same framework can be used for a range of potential applications. 
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However, as yet neither an "editor-specification" language has been worked out for
mally, nor tools have been forged to define and modify editor prototypes. A graphical 
editor shell with tools to facilitate the definition of object classes, constraints and 
constraint generation rules could be a further objective. 
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A Quantum Approach to Geometric 

Constraint Satisfaction 

Remco C. Veltkamp 

This paper presents an incremental approach to geometric constraint satisfaction that is suitable 
for interactive design by categorizing solutions into so called quanta. A quantum is a range of 
solutions with uniform geometric characteristics. In this way, the constraint management system 
keeps the intermediate solutions in the geometric domain, so that new geometric constraints 
can be interpreted on the same high level of abstraction. This approach leads to a number of 
advantages: the system 

• can handle (perhaps temporarily) under-constrained specifications, 
• represents both alternative discrete solutions and continuous ranges of solutions, 
• performs satisfaction locally and incrementally, 
• supports constraint inference and geometric reasoning, 
• preserves the declarative semantics of constraints. 

The relationships between constraints and both the imperative nature and the information hiding 
principle of object-oriented programming are discussed. 

1 Introduction 

Constraints specify dependency relations between objects which must be satisfied 
and maintained by the system. Constraint systems are used in applications such as 
geometric modeling, user interfaces [Szekely and Myers, 1988], simulation [Steele 
Jr. and Sussman, 1979], and animation [Badler and Kamran, 1987]. Geometric 
constraints can fix one or more degrees of freedom for positioning, orientation 
and dimensioning. For example, when a circle of fixed radius is constrained to be 
tangent to a fixed line segment, the position of the circle centre is restricted to two 
line segments p leI to the given one, at a distance equal to the radius . 

. on system relieves the task of the user: problems can be solved 

.. ts, the user need not specify how to solve the constraints. 
It is easier to state nstraints than to satisfy them. However, even if the system 
cannot satisfy all constraints that can occur in a given domain, it frees the user from 
the error-prone process of solving the many little but time-consuming problems. 
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The way that constraints are solved largely depends on the techniques used for 
representation and manipulation, see [LeIer, 1988] for several approaches. Our 
approach categorizes alternatives and ranges of solutions into classes featuring the 
same characteristics, called quanta, see Section 4. We use geometric manipulation 
as opposed to algebraic manipulation and numerical computation to find solutions 
to geometric constraints. General geometric knowledge is combined with properties 
of (classes of) geometric objects to infer relations between geometric objects in order 
to satisfy constraints. This high level geometric reasoning provides geometrically 
meaningful solutions and tries to avoid computationally expensive algebraic and 
numerical methods [Arbab and Wing, 1985]. 

Geometric reasoning and constraint satisfaction are facilities that can be part of 
a basic layer of a design system, but this layer in itself is not an application sys
tem. It provides a good basis for CSG modeling and modeling with Euler opera
tors [Mantyla, 1988], feature-based modeling [Pratt, 1987], and intelligent human
computer interaction interfaces [Helander, 1988]. 

The rest of this paper is organized as follows. The next section gives an introductory 
classification of some constraint satisfaction techniques and an overview of systems 
that have been developed. Section 3 explains some shortcomings with respect to 
geometric modeling that motivates the present research, and Section 4 introduces 
the quantum approach. This is formalized in Section 5, where our system architec
ture is discussed, and further illustrated in Section 6, which gives some examples. 
Section 7 discusses additional aspects of the quantum approach; Section 8 discusses 
how constraints and the object-oriented paradigm relate to each other, and men
tions some implementational aspects. Finally, Section 9 gives some conclusions and 
suggests future research directions. 

2 Overview 

We can classify satisfaction techniques into structured and unstructured methods. 
An orthogonal classification can be made into numerical computational and deduc
tive techniques. Structured deductive techniques can exploit several methods for 
the propagation of results. 

In the following subsection, I describe these techniques in more detail, in the subse
quent subsection, I will mention some constraint systems that use these techniques. 

2.1 Satisfaction Techniques 

Unstructured Methods 

Unstructured methods do not group dependent constraints into sets, and do not 
solve the independent sets separately. Solving the overall set of equatipns compris
ing all constraints is perhaps the simplest way of constraint satisfaction. Obvious 
drawbacks are the computational complexity and its inefficiency for interactive 
applications: each single change leads to solving the whole set of all equations. 
One way to solve the overall set of equations is by relaxation, see the following 
subsection. 
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Among the unstructured deductive systems are algebraic manipulation, logic pro
gramming, and term rewriting systems. Algebraic manipulation, or symbolic alge
bra systems are able to solve complex sets of algebraic constraints at a symbolic 
level [Davenport et al., 1988]. They are usually slow. 

Logic programming can be classified into functional programming, based on equa
tionallogic (e.g. LISP), and relational programming, based on Hom clause logic (for 
example Prolog). 

Augmented term rewriting as developed by [LeIer, 1988] supports three features in 
addition to term rewriting: abstract data types, typing of variables, and binding of 
values to variables. The abstract data types are defined by rules. The strong ties 
with equational logic gives augmented term rewriting a solid theoretical foundation. 
As a consequence, the control mechanism is neatly separated from the problem 
solving rules. 

Structured methods 

Structured methods impose a structure on the set of constraints by grouping them 
into sets of dependent constraints. These local sets are satisfied independently. 

Numerical computation of a local set of constraints is often done by relaxation. 
Numerical relaxation makes an initial guess at the values of the variables in an 
equation, and estimates the error by some heuristic. The guesses are adjusted 
accordingly and the new errors are estimated. This repeats until the error is mini
mized. A disadvantage of this method is that it will converge to only one of the roots 
of an equation. Moreover, which root is found depends on the initial value of the 
variable. This makes the solution unpredictable in under-constrained situations. 
Numerical relaxation is also computationally expensive, and can be used only in 
continuous numeric domains. One form of relaxation is the N ewton-Raphson itera
tion technique for finding the root of a function. It is faster than general numerical 
relaxation. 

A set of dependent constraints can be represented as a network of constraints. 
Structured deductive systems use some method to assimilate results of the infer
ence process throughout the network. We mention two such methods. 

Propagation of known states, or just local propagation, can be performed when there 
are parts in the network whose states are completely known (have no degrees of 
freedom). The satisfaction system looks for one-step deductions that will allow the 
states of other parts to be known. This is repeated until all constraints are satisfied, 
or no more known states can be propagated. If not all constraints can be satisfied, 
the remaining constraints must be resolved by some other method, for example 
numerical relaxation. 

Propagating degrees of freedom amounts to discarding all parts of the network that 
can be satisfied easily, and solving the rest by some other method. This method 
identifies a part in the constraint network with enough degrees of freedom so that 
it can be changed to satisfy all its constraints. That part and all the constraints 
that apply to it are then removed from the network. Deletion of these constraints 
may give another part enough degrees of freedom so as to satisfy all its constraints. 
This continues until no more degrees of freedom can be propagated. The part of the 
network that is left is then satisfied by some other method if necessary, and the 



www.manaraa.com

4. A Quantum Approach to Geometric Constraint Satisfaction 57 

result is propagated towards the discarded parts, which are successively satisfied 
(propagation of known states). 

Those are two methods of propagation, independent of what is actually propagated. 
We distinguish the following types of information inference and propagation. 

Solution set inference makes deductions on the set of possible solutions, which 
are restricted by the constraints. Most frequently used are discrete value sets, or 
intervals of numerical values, see [Davis, 1987]. 

In single solution inference, constraint variables get assigned a single value, of
ten numeric. Single geometric solution inference is performed by the operational 
approach [Rossignac, 1986, Arbab and Wang, 1989]. It satisfies constraints sequen
tially by performing operations (translation, rotation, etc.) on the geometric objects 
involved. An already satisfied constraint either tolerates an operation on one ofits 
operands, or must propose a transformation to satisfy the constraint again. In this 
way, operations can be propagated through a constraint network until all operations 
are tolerated. 

Local algebraic expression inference is a means to deal with loops in propagating 
numeric values. [Steele Jr. and Sussman, 1979] used powerful algebraic manip
ulation, but found that these techniques are not powerful enough to solve many 
interesting problems that people can solve. The way people usually solve these 
problems is by organizing the solution so that simple canned algebraic solutions 
suffice. 

In constraint inference, implied constraints are derived and explicitly added to the 
network. Implied constraints can be recognized by a unification mechanism or by 
the use of multiple redundant views [Steele Jr. and Sussman, 1979]. They can be 
used to avoid extensive manipulations in cases where local propagation does not 
suffice. Stating constraints in a different way with the same meaning can help 
the constraint management system to solve the constraints locally. Otherwise the 
system may have to resort to techniques such as relaxation. 

2.2 Constraint systems 

Some systems that deal with geometry and some general purpose constraint lan
guages are mentioned below in chronological order. 

Sketchpad [Sutherland, 1963] was the first constraint-based drawing system. It 
satisfies constraints using propagation of degrees of freedom. When this fails, it 
resorts to relaxation. 

Variational geometry [Lin et al., 1981] translates dimensional constraints into a 
single overall system of equations, which is solved numerically by the Newton
Raphson method. The dimensional constraints are defined by equations on coordi
nates of characteristic points. Each time a dimensional value is changed, the whole 
system of equations must be solved. 

ThingLab [Borning, 1981] enlarges the possibilities of Sketchpad with extensibility 
and object-oriented techniques, so that new classes of objects and constraints can be 
defined. It uses both propagation of degrees of freedom and propagation of known 
states. 
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Juno [Nelson, 1985] is a simple system based on one geometric primitive: the point. 
It uses a Newton-Raphson iteration technique to solve constraints. The user has to 
supply an initial value to start the iteration. 

[Rossignac, 1986] presents an operational interpretation of constraints in CSG mod
eling. Constraints are specified by the user in terms of relations between boundary 
features, and are transformed by the system into rigid motions of parts of the CSG 
tree. An under-constraint situation can simply not occur. The user must specify the 
order of evaluation and is responsible for solving conflicts. 

Real general purpose languages for constraint logic programming (CLP) can be used 
in a wide range of applications, but are usually limited in their satisfaction power 
in each specific domain. Most constraint languages are biased to a more specific 
domain: CLP(ID) [Cohen, 1990). For numeric constraints this yields CLP(IR) over 
the domain of real numbers [Heintze et al., 1987). This is not a symbolic algebra 
system: it uses numerical deductions rather than unification. 

Bertrand [LeIer, 1988] is a rule-based system that uses augmented term rewriting. 
It has a form of abstract data types, which allows to define new types and con
straints. Bertrand is a general purpose constraint language, but deals primarily 
with numeric constraints. 

OTP (Operational Transformation Planning) [Arbab and Wang, 1989] provides an 
operational interpretation of constraints. It exploits solution reduction, i.e. only 
one solution is presented in an under-constrained specification (single solution 
inference). The satisfaction process is planned by means of symbolic reasoning on 
the geometric level, that is, by geometric reasoning [Arbab and Wing, 1985). This 
can also involve the inference of implied constraints. 

In [Emmerik, 1990] constraints relate coordinate systems. Constraints between 
degrees of freedom (for example between the x- and y-coordinate because of a dis
tance constraint) are evaluated after lower-order constraints (for example one that 
uniquely determines the x-coordinate). This is a form of delayed satisfaction. Selec
tion among alternative solutions to constraints is based on the minimal resulting 
disturbance. So, a single solution is derived for each constrained variable (single 
solution inference). 

3 Motivation 

In this section we mention some problems that motivate our current research. 

Objects can be related to each other by constraints, without logically being involved 
in a part-whole relation. We do not want to be forced to create an artificial whole 
consisting of parts, in order to be able to express a constraint, as in ThingLab. Spec
ifying constraints has a declarative flavor, and somewhat conflicts with part-whole 
hierarchies and information hiding, which are the hallmarks of 'object-oriented 
systems. The relation between constraints and objects is discussed in Section 8. 

Many systems detect over-constrained situations, but cannot handle under-con
strained cases. Indeed, numerical methods cannot solve a set of under-constrained 
equations. On the other hand, a CLP system for solving numeric constraints returns 
a set of deduced equations that constitutes the solution. In a geometric context, 
however, we prefer a geometrical form of the solution. The operational approach 
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Figure 1 : Simultaneous evaluation of mutually constrained circles 

and selection of alternatives based on minimal disturbance yield only one of the 
solutions. This may give rise to two problems: 

• The proposed solution is as it was intended, but the user is not aware of the 
ambiguity of the specification. This may cause problems for post-processing . 

• The solution is not as intended, and the user must interfere because the 
system cannot propose alternative solutions. 

Both problems relate to the existence of alternative solutions. We distinguish sev
eral types of alternative solutions: 

1. Several objects meet a specification of a variable involved in a constraint, and 
one or more of them must be addressed. For example, any circle or all isosceles 
triangles have to be addressed. 

2. A constraint can have several discrete solutions. For example a circle through 
two points and with a fixed diameter unequal to the distance between the 
points, can have two positions. 

3. A constraint can have a continuous range of solutions. For example, the locus 
of a point having a fixed distance to a fixed point is a circle. 

Whether the first type of alternative solutions can be handled depends on the 
programming environment, for example the message passing mechanism, and is 
not within the scope ofthis paper. 

Some systems mentioned above only deal with numeric constraints. Most graph
ics-oriented constraint systems directly translate the (geometric) constraints into a 
set of numeric constraints or equations. Often only linear equations can be solved. 
Instead, we want to solve constraints at a high level of geometric abstraction. 
This allows powerful reasoning, which can avoid some of the problems that occur 
with numeric constraints: recall that even a simple distance constraint results in a 
quadratic equation. 

Simultaneous evaluation of mutually constrained objects is a difficult problem. 
Look at Figure 1 for an example. In this example, each of the two circle centres 
must lie on a line segment; then, the circles are constrained to be tangent to each 
other on the outside. It is too complex for an operational technique to translate 
both circles along the line segment simultaneously so as to let them touch. Delayed 
evaluation is then preferred to relaxation in order to deal with a geometrically 
meaningful representation as long as possible. 
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Figure 2: Quanta involved with the constraints distance(p, h, d) and on(p, l2) 

In this paper we focus on providing ranges of solutions and discrete alternative 
solutions in under-constrained situations by means of a quantum approach. In 
combination with geometric reasoning and delayed satisfaction this gives a more 
powerful problem solving capability than usually provided by constraint systems. 

4 Quantum approach 

Our approach to geometric constraint satisfaction is based on the reduction of both 
problem complexity and solution domain complexity by geometric simplification. 
Problem complexity reduction is achieved by expressing geometric primitives in 
terms of characteristic parts. For example, the position of a circle is reduced to the 
position of a point: the circle centre. Constraint solving then amounts to recording 
the solution of the constrained geometric primitives in terms oftheir characteristic 
parts. 

The unit of the solution domain is a 'quantum', which is itself a geometric primitive: 

A quantum is a geometric primitive describing a part of the solution set 
with uniform geometrical characteristics. 

We use the term quantum because it captures both 'interval' and 'region', and is 
more descriptive than 'solution set'. The nature ofa quantum is that it describes a 
sharply bounded quantity of some phenomenon, in our case the geometric properties 
of a solution set. Note that quanta are not indivisible, nor need they be disconnected. 

By means of quanta, solutions are categorized into ranges or classes featuring the 
same geometric characteristics. In this way, subsequent processing of the solutions 
can exploit the geometric properties of the quanta. 

For example, the locus of a point p having a fixed distance to a line segment 11 
consists of the union of two line segments, and two half circles, see Figure 2. The 
solution is split into the quanta q1, ... , Q4, representing the tWQ line segments 
and two half circles. These quanta represent infinitely many alternative solutions. 
Incremental specification of a geometric object with constraints will successively 
restrict its solution domain. If p is further constrained to lie on a line l2 (giving 
another quantum: Q5), the solution is restricted to the intersection of Q5 with all 
the alternative solutions so far. Since calculating the intersection of a line and a 
circle differs from intersecting two lines, we take advantage of the subdivision into 
quanta Q1, ... , Q4. 
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01 distance ~ G -
Figure 3: Network result of the quantum generating function applied to the con
straint distance(p, iI, d), corresponding to Figure 2 

Some simple constraints (with a fixed second operand) and their associated quanta 
are listed below: 

primitive I constraint I primitive II quanta 
point distance point circle 
point distance line segment 2 line segments 

2 half circles 
point left/right of line half-plane 
circle tangent line 2 lines 
circle tangent circle 2 circles 

The same principle can be used in three-dimensional space. In general, a solution 
set may not be representable with a fixed set of geometric primitives, especially 
in three-dimensional space. In that sense the set of constraints and geometric 
primitives should agree with each other. In the examples in the rest of this paper, 
we use the primitives point, line, and circle, and the constraints onO, centre.DnO, 
distanceO, and tangentO. 

5 System design 

The constraint system introduced here consists of a set of constraints C, a set of 
variables V, a set of quanta Q, a quantum generating function G, and a tolerate 
function T. Variables and quanta are both geometric primitives. 

A constraint is a relation between a number of variables from V. The number of 
variables depends on the type of constraint. Depending on the constraint and the 
variables, quanta from Q will be associated with the variables. Constraints are 
multi-directional, that is, each of the variables involved constrains the,others. Each 
constraint has a set of methods that initiate the satisfaction process, starting with 
the generation of the appropriate quanta. In contrast to many other systems, a 
method may be executed even if there is more than one undetermined variable. To 
make the following presentation clearer, we will only consider binary constraints. 

A set of constraints, variables, and quanta can be represented as a network. We 
represent variables in circular nodes, constraints in rectangular nodes, and quanta 
in rounded rectangular nodes. 
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Figure 4: Network corresponding to Figure 2 after adding constraint on(p, 12) and 
applying the generate and tolerate function 

When a new constraint is specified, a corresponding constraint node is added to 
the network, connected to the variables nodes. The quantum generating function 
G : (c, vI, v2, { %}, { q2i}) >--+ ({ % }, { q2j } ) is a mapping from a constraint, the relevant 
variables, and their current quanta (or none, for a new constraint), to new quanta. In 
the network, the quanta are positioned between the constraint and the variables, 
see Figure 3. The current quanta associated to a variable are those which are 
incident in the network. 

Note that not all tuples from C x V x V are geometrically meaningful. G is only 
defined for a number of relevant combinations of constraints and variables. Note 
further that in general several quanta for each variable can be generated, as in 
Figure 3. 

All new quanta {qnewi} of each single variable, resulting from a new constraint, 
are intersected with all current quanta {qcuri} of that variable, by the tolerate 
function T : ({ qnewi}, {qcur;}) >--+ {qtoli}. An empty quantum results when the 
intersection is empty. An over-constrained situation is detected when a variable has 
only empty quanta. Otherwise the variable tolerates the new constraint. Figure 4 
shows the result of applying the generate and tolerate function after adding the 
constraint on(p, [2). Between a constraint and an associated variable is a number 
of sequences of zero or more quanta. In the direction from the constraint to the 
variable, each quantum includes the next one. Where two sequences come together, 
the intersection determines the next quantum. 

The non-empty quanta among the resulting qtoli of variable v are propagated. To 
each constraint Ci that has v as a parameter, the generation function is applied with 
quanta qtoli of v, giving new quanta for the other variable. If they differ from its 
current quanta, these new quanta must be tested for toleration. This propagation 
is repeated. In principle, the propagation need not terminate, since an infinite loop 
can occur. A loop can be easily detected, but in general it is not easy to determine 
whether a loop is finite or infinite. The constraints in a loop can be satisfied by some 
other method; the resulting quanta must again be propagated. 

6 Examples 

Consider again Figure 2. Because iI, related to p by a constraint, is not further 
constrained and has no associated quantum that could be affected, there is no 
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propagation, and p is constrained to qs and CJ7. In general, however, a new quantum 
may affect the quanta of another primitive that is related to it by a constraint. A 
new quantum must therefore be propagated past its related constraints. 

See Figure 5, where we have a point p, a line segment 1, and two circles Cl and D.!. 
Suppose that a point p must lie on line segment t, and circle Cl must be centred at p. 
Geometric reasoning leads to the construction of the quanta ql and lJ2, representing 
the loci of p and (the center of) Cl, both coincident with I. Let the next constraint 
be that Cl and D.! are tangent on the outside, giving a new quantum qa. Circle 
Cl tolerates this new constraint, resulting in q4, which must be propagated. This 
means that given the constraint that Cl is centred at p and has a quantum % a new 
quantum qs for p is generated and tested for toleration. In this case, it is tolerated 
by p because it is fully contained in ql. The :final result is that Cl is constrained to 
position % and p to position qs (which incidentally coincides with q4). 

All this manipulating may seem superfluous, but in general the new quantum qs 
for point p can be totally different from q4, just as the starting quanta ql and q2 can 
be totally different. For instance when p is constrained to have a fixed distance to I. 

So far, the toleration test could succeed because the intersection of two quanta was 
successful. It can happen, however, that the situation is too complex, or the system 
is not intelligent enough, to tell whether the quanta intersect. Look, for example, 
at the situation in Figure 6 with three fixed lines h, 12, la, and two circles Cl and 
C2. The constraint centre-Dn(Cl, h) produces quantum qU, centre-Dn(C2, 12) gives lJ2b 
and tangent(Cl, C2) gives q12 and q22. Note that q12 and lJ22 are not fixed, but can move 
along 12 and h respectively. 

Suppose now that the system is not intelligent enough to intersect a 'floating', 
or generic circle, with a line segment. Effectively, tangent(cl, D.!) will be delayed 
until subsequent constraints allow the system to handle it. When centre-Dn(cl, la) is 
specified, the system creates quantum qla, a line segment coincident with la, see the 
lower part of Figure 6. Checking whether Cl tolerates this new constraint results in 
the intersection of qu and qla, giving q14. This can be more easily intersected with 
the generic quantum q12. The result is q14, because it is fully contained in q12. 

The resulting q14 is propagated. This means that, given the constraint that Cl and 
D.! are tangent and Cl has quantum q14, a new quantum lJ2a is generated, which is a 

q3 

Figure 5: Quanta involved with the constraints on(p,l), centre_on(Cl,p), and 
tangent( Cl,D.!) 
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q 11' i] ---+--1---- -If---I--+---+--I---+--- Q21' 12 

13 • Q13 

Figure 6: The quanta involved with the three constraints centre_on(Cl, h). 
centre_on(C2, [2), and tangent(Cl, C2) (top), and the additional constraint cen
tre_on(Cl, [3) (bottom) 

circle that has a fixed position. This circle can be intersected with q21, giving q24 for 
C2. The end result is that Cl has quantum. Q14, and C2 has quantum. Q24. Both quanta 
specify fully determined positions. Figure 7 shows the corresponding changes in 
the network. 

7 Discussion 

In the last example all variables are fully determined by constraints, after delayed 
satisfaction. In general, however, the solution of the given set of constraints is 
formed by the current quanta, and these need not specify a single position. This 
happens in a under-constrained specification. On the other hand, a conflict of con
straints is detected when a variable has only empty quanta. 

A quantum. need not even be fully determined, as in our last exarn,ple. Indeed, it 
is common to specify an assembly of geometric primitives by constraints, relative 
to an object that is transformed afterwards. It is therefore necessary to be able to 
process incomplete information. In order to keep intermediate solutions simple, we 
want to evaluate them as far as possible, and also use latent geometric information. 
Dealing with incomplete information and deriving latent information is typical in 
geometric reasoning. 
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adding centecon (C1 • 13) and applying G and T: 

propagation: 

Figure 7: Some successive networks corresponding to Figure 6 

Operations on a variable, such as translate, scale, mirror, and project, can be 
handled by performing proper corresponding operations on its quanta. These new 
quanta must then be propagated through the network. 

For interactive CAD purposes, a constraint must also be removable. In our system, 
deletion from the network involves removal of the constraint as well as the se
quences of quanta between the constraint and its variables. Sequences from other 
constraints to the same variables must be 'repaired' by intersecting the proper 
quanta. The resulting new quanta must be propagated through the new network. 
A more detailed presentation of the properties of the propagation algorithm is given 
in [Veltkamp and Arbab, 1992]. 

Our system already used geometric simplification by shrinking a circle to a point, 
and regarding the radius as a distance. In this way the constraint that a circle C! is 
tangent to another circle C2 is regarded as the constraint that the shrunk C1 has a 
distance to the shrunk C2 that is equal to the sum of their radii. Geometric reasoning 
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can be used to make the system more intelligent. In the example of Figure 6, the 
system is not intelligent enough to intersect a line qll with a floating circle q12 

restricted to line iI. In this case, the same type of geometric simplification as above 
can be used. It can be reasoned that the intersection is necessarily a part of qll, or 
empty. If it is non-empty, it must be that part of qll that has a distance to any point 
on iI, that equals the radius of q12. 

In order to perform such geometric reasoning more easily, we must consider implied 
constraints (constraint inference), not only between given constraint variables, but 
also between two quanta or between a quantum and a variable. The user should 
have no direct access to these implied constraints. For example in Figure 7, quantum 
q23 is concentric with variable q. For the system the addition of implied constraints 
is transparent, since quanta are also geometric primitives, which can be involved 
in constraints. 

The quantum approach can also be applied to constraints in three-dimensional 
space, although we can run into problems when a solution set is not representable 
by quanta. However, a useful set of constraints and quanta can be chosen, as 
demonstrated in [Veltkamp, 1991]. The quantum approach can even be applied 
to pure numeric constraint problems. The solution is then derived with interval 
quanta as parameter values, instead of geometric quanta. Algebraic reasoning then 
takes the place of geometric reasoning. 

8 Constraints and objects 

Object-oriented graphics is a means to deal with the complexity of computer graph
ics. The geometric representation ofthe constraint variables and the quanta natu
rally corresponds to object-oriented graphics concepts. On the other hand, relation
ships between objects other than 'is-a' and 'part-of' hierarchies, such as constraints, 
cannot be suitably represented by message passing. 

We distinguish two possible incompatibilities between constraints and object-orien
ted concepts: 

• a constraint solver looks at, and sets, the constraint variables' internal data, 
which conflicts with the information-hiding concept in the object-oriented 
paradigm; 

• object-oriented programming is imperative, while constraint programming is 
declarative in nature. 

If one wants to use object-oriented methods to manage complexity in implementing 
a graphics system, and wants to provide constraints to the user of the system as 
a tool to manage the complexity of problem solving, then constraints and objects 
must be friends. However, message passing for constraint handling, as in [Laffra 
and van den Bos, 1991], is either limited to constraint maintenance, or against 
the object-oriented philosophy: providing all objects subject to constraints with 
interface methods to get and set internal data grants every other object to get and 
set values. 

One way to restrict this, is that an object only allows value setting when its internal 
constraints remain satisfied, as in [Rankin, 1992]. By contrast, access to private 
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data can be limited to constraint objects (or the constraint solver-object) only. For 
example C++ provides the 'friend' declaration to grant functions access to the pri
vate part of geometric objects, see next subsection. This is also comparable to the 
solution of[Cournarie and Beaudouin-Lafon, 1992], where special variables (slots) 
are accessible by constraints only. 

One can argue that the encapsulation is still violated (and specifically that a C++ 
friend is not intended to change the internal state of an object). Alternatively 
one can see constraints more as a means to access information in an orderly and 
restricted way, than that they violate the information hiding principle. At least 
the responsibility for integrity is shifted from the constraint user to the constraint 
implementer. A problem that remains is the difficulty of debugging a constraint 
system, due to the global effects of constraints. 

Object-oriented languages are imperative, and thus use a notion of state, particu
larly represented by objects. Pure constraint languages are declarative, and thus 
specify one single timeless state: the solution to the specified problem. However, 
both paradigms can be combined as is shown in [Freeman-Benson, 1990], where 
an imperative assignment to a variable sets a value at one moment in ime, and 
a declarative constraint dictates a value from that moment on. However, if the 
solution depends on the order in which constraints are solved, the declarative se
mantics is destroyed. The quantum approach uses solution set inference, which (in 
principle) does not depend on the order of constraint satisfaction. Delayed satisfac
tion can thus be used without side effects, preserving the declarative semantics of 
constraints. 

8.1 Implementation 

We distinguish the following relevant objects classes: GeometricPrimitive, Quan
tum, and Constraint. Instances of objects are created upon user demand, typically 
via a graphics interface. 

A quantum can be designed as a polymorphic object which refers to a line, circle, 
polygon, etc. An alternative in environments supporting multiple inheritance is 
to let a quantum object inherit properties from geometric primitives, as well as 
additional properties that are specific for quanta. 

The exact geometric primitive type of each individual quantum object must be 
known to enable correct use of the primitive. The primitives provide this type
information by means of the method whatamiO. When using an object-oriented curve 
intersection method such as [Rankin and Burns, 1991], primitives also provide a 
method nearestpointO which returns the point on the curve that is nearest to a 
given point. A drawO method typically calls the drawing method of the geometric 
primitive after a drawing style is specified, to distinguish a quantum from a design 
primitive. 

All constraints are subclasses of the base class Constraint, and have methods 
drawO and satisfyO. The drawO method visualizes the constraint by connecting the 
operands with an arc that is labeled with a corresponding constraint icon. 

The system is currently being implemented in C++ [Stroustrup, 1986] and Quintus 
Prolog [Quintus, 1990], which provides an interface with C. Class methods, in 
particular the constraint method satisfyO, may contain assertions and goals in Horn 
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clause logic. This provides a way to exploit the geometric context of the constraint 
and variables, and to make the system more intelligent by geometric reasoning. 

In a typical C++ implementation the above mentioned functions are virtual, to 
indicate that the base (super) class has a general version, and the derived classes 
can have different own versions: 

class GeometricPrimitive 
{ 

} 

friend class Constraint; 
private: 

Frame frame; 
Color color; 
/I ... 

public: 
virtual GPType whatamiO; 
virtual Point nearestpointO; 
virtual void drawO; 
II ... 

II grant access to private data 

II modeling coordinate system 

II geometric primitive type 

This is only one of the many possible ways to implement the quantum approach, ex
ploiting both object-oriented concepts and relational logic. The alternatives include 
an extension of (Concurrent) Prolog with object -oriented features, see for exam
ple [Shapiro and A.Takeuchi, 1983], [Zaniolo, 1984], and the language Oar [Arbab 
and Wang, 1989]. Object-oriented concepts can also be combined with a functional 
language, see for example Common Lisp Object System (CLOS) [Moon, 1989]. All 
these languages specifY objects, hierarchies, and methods in a declarative way. 

9 Conclusion 

I have presented a constraint satisfaction system based on the quantum approach. 
This approach is suitable for interactive design because it can handle (perhaps tem
porarily) under-constrained specifications and alternative solutions, and performs 
satisfaction locally and incrementally by local propagation. The system keeps the 
intermediate solutions in the geometric domain, so that new geometric constraints 
can be interpreted on the same high level of abstraction, allowing powerful rea
soning. Both alternative discrete solutions and continuous ranges of solutions are 
determined and propagated (solution set inference). The system can therefore easily 
detect ambiguity and present alternative solutions. 

More research is needed to further exploit the capabilities of geometric reasoning 
and constraint inference. In particular implied constraints between quanta or be
tween quanta and variables can be used by the satisfaction system to solve complex 
constraints more directly. 
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A Graphics Object-Oriented Constraint 

Solver 

John R. Rankin 

The development of computer graphics constraint systems has been of considerable interest 
in recent years. It is desirable that constraints may be dynamically incorporated into selected 
graphics output primitives, and also into graphics segments as a whole at the time of their 
interactive construction. The constraints usually take the form of coupled equations or inequa
tions limiting the rendition of graphics primitives or segments. After a few constraints have 
been defined in the graphics constraint system, the interaction of these rules becomes quite 
complicated, and it has been necessary to provide a constraint equation solver to resolve these 
interactions and take control over the decisions for the rendition of all graphics primitives and 
segments. 

From another direction, the object-oriented programming paradigm has been found to be very 
effective in producing large pieces of maintainable and extendable standard graphics software. 
When graphics object-oriented programming is applied to graphics constraint systems the 
constraint solver is found to violate a basic principle of object-oriented programming, as in 
particular, the constraint solver needs to look at the internal data of every graphics object and 
will also adjust the internal parameters of graphics objects in order to fit the solution which it 
finds of the complex constraint equations. Consequently, the question of the compatibility of 
graphics constraint programming and object-oriented programming is currently a topical issue. 

This paper discusses an alternative approach to the constraint solver code. This new approach 
forms a harmonious and natural integration with the object-oriented programming paradigm and 
does not require complex equation entry by the user. We investigate the application of geometric 
iteration processes which are shown to be very naturally expressed in the object-oriented 
paradigm, and a number of conjectures concerning the behaviour of these processes are 
formulated. Furthermore, constrained geometric objects are built from previously constructed 
geometric objects, or from a set of ready-made geometric elements with inbuilt constraints. Our 
results show that this approach satisfactorily maintains constraint integrity. Some examples 
using this new approach to constraint solving are also described. A technique for dynamically 
constructing constrained graphics segments (objects) is described using a new algorithm the 
"Democracy Algorithm" which generalizes this approach. An implementation of the ideas has 
shown that the method is practical and that only a small amount of number crunching is required 
before the constraints are satisfied. 
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1 Introduction 

Computer graphics programming has reached a stage where application program
mers are required to produce software where the graphics objects visible on the 
screen have their own built in intelligence with respect to maintaining their own 
integrity and individuality, and also with respect to the distinctiveness of their 
interaction with other screen objects. It is thus becoming necessary to find ways 
of building this level of intelligence into the graphics and making it easier for the 
application programmer to achieve his objectives. This is the area of constraint 
programming [LeIer, 1988], where things are not just drawn or even animated, 
but move and change according to strictly enforced rules, the constraint equations. 
A number of experimental constraint projects have already been built and there 
are some emerging on the commercial scene [Rankin, 1990a, Fertey et al., 1990, 
Nelson, 1985, Rankin, 1990b, LeIer, 1988]. Simulation of physical systems such as 
the cold water dispenser + beaker with thermometer + oven with adjustable flame 
+ controls selectable and operable on the screen by means of the mouse pointer as 
described in [Coutaz and Bass, 1988] are systems where the constraints are already 
hard-coded into the program and cannot be varied. The CAD package [Khoubyari, 
1990] and Borning's ThingLab [Borning, 1986] (discussed also in [Rankin, 1990a]) 
are systems where the user can dynamically create screen objects and interactively 
define their constraint equations to the system. In these general constrain systems, 
the aim is to allow the desired constraints to be interactively entered by the system 
user at the same time that the object to be constrained is being constructed on the 
screen. The constraints typically take the form of equations or inequations relating 
the geometric parameters that lie behind the graphics images being displayed. In 
many of these systems it is required that the user enter the constraint equations 
as algebraic expressions. There are however many difficulties with this traditional 
technique. One is that the user needs to know or remember what range of functions 
the system recognizes (such as which trigonometric functions, square roots and 
other powers, logarithm and exponential functions) so that acceptable algebraic 
expressions can be entered. The functions provided may not enable the user to en
capsulate the geometric constraint desired, or conversely, the functions may be too 
general and allow constraints which are not natural to the geometry but which the 
user could easily enter by slight mistakes in the algebra. This approach requires 
the user to be proficient with complex algebra when his competence may in fact 
lie in geometric construction and visualization. A further difficulty is that the user 
has to be able to relate each algebraic variable he enters to the visual geometry 
in some way. This is a design and implementation problem. A related implementa
tion problem is that of designing a suitable format for the user to be representing 
and entering algebraic relations. Another difficulty is that of making the code to 
interpret the input algebraic expressions and then to be able to use the entered 
equations for determining a solution of the constraints. The more cpnstraint equa
tions that are entered into the system, the more complex their interaction becomes, 
and the more difficult it becomes to solve them. 

object-oriented programming is now finding extensive application in graphics pro
gramming. The OOP paradigm enables programmers to produce more bug-free, 
maintainable and extendible graphics code. Each graphics entity or graphics out
put primitive typically becomes an object class with its own methods for creation, 
display, animation, attribute setting and destruction. OOP systems allow libraries 
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of such objects to be extended as and when new objects are needed without having 
to recompile the old code. In this way distributed binary codes can be extended 
locally or by supplier updates without the need to refer to the proprietry source 
codes. When the advantages of OOP are brought to bear on the new problems of 
constraint programming we find that incompatibilities occur in the areas of encap
sulation and extensibility. With encapsulation, an objects private data is supposed 
to be inaccessible to all code except the objects own methods. The traditional con
straint equation solver however is a piece of code that needs to know every bit of 
internal information of every graphics entity involved in the constrained object and 
its environment. This code must not only read the private data ofOOP objects but 
must also rewrite that data in setting up the solution to the constraints that it ar
rives at. With extensibility, new graphics entities should be able to be added to the 
system without recompilation. However the traditional constraint solver is hard 
coded to recognize only a given set of graphics entities, and would need recoding 
and recompilation if new entities were to be added to the system. 

The work described in this paper addresses this compatibility problem, and at
tempts to provide an harmonious integration ofOOP and constraint programming. 
To do so the traditional approach to entering constraints as equations is rejected in 
favour of a new approach presented in [Rankin, 1990a, Rankin and Burns, 1990a, 
Rankin and Burns, 1990b] making use of schematic diagrams to represent what 
linkages between entities are set up in the constrained geometry. As described in 
[Rankin, 1990a], because geometry is based on points, and the mouse pointing sys
tem is a useful way of entering or selecting point data for geometric operations, 
we have chosen to encode all geometric message passing as point sets [Rankin, 
1990b]. The schematic diagrams indicate the traffic of this point data between geo
metric components and are reminiscient of digital electronic circuit diagrams. The 
schematics very easily map to OOPs code. Loops in the schematic circuits result in 
iteration in the OOP code. Just as electronic circuits designed for particular func
tions, can have undesirable transient signals due to feedback, and yet establish 
output voltage levels from the inputs very rapidly, so we also expect that OOPs 
code derived from the schematic diagrams would likewise resolve constraint prob
lems rather rapidly. Our experiments have indicated that this is indeed often the 
case. Geometric functional iteration does seem to provide a new and simple way 
of solving complex geometric constraint equations. A similar iterative technique 
implemented in hardware, has been previously applied to algebraic problems. This 
technique is called the CORDIC technique, and a survey ofits capabilities in given 
in reference [Fulcher, 1990]. 

In this paper we shall illustrate simple applications of the schematic diagram ap
proach to some constraint problems. Then we will look at a generalized approach 
that depends heavily on the new features that the OOP paradigm provides for the 
systems programmer. The generalized approach makes use of the new algorithm 
perhaps appropriately called the Democracy Algorithm which is described in this 
paper. It allows the user of the constraint system to interactively construct con
strained screen objects. The algorithm has been tested in a program called GICS 
with pleasing results. The GICS program avoids the need for the user to generate 
schematic diagrams on the screen (by making some limiting assumptions about 
what the user will want to do), and this has the advantage that it ensures that 
every constructed constrained screen object starts in a feasible configuration. 
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According to certain observations described in section 4, this provides confidence 
that the Democracy Algorithm will operate successfully. 

2 Hierarchies of Graphics Object Classes 

By a graphics entity (or GE) we mean a simple graphics output primitive such as 
a line segment, a circle, an elliptic arc, a polyline and so forth. The underlying 
graphics library provides us with the GEs and from these we go on to produce 
combinations ofGEs into useful visual screen objects or graphics objects (GOs) also 
known as graphics segments. A layer of software is provided to bundle code for each 
GE into an OOP object with a standard set of methods. (We called this software 
layer the constrained GE or CGE library.) This is illustrated in Figure 1 and the 
standard methods required for each GE in the CGE library are listed in Table 1. 
The GEs themselves can and mostly do have internal constraints. The maintenance 
of an internal GE constraint is the responsibility ofthe GEs own methods, and the 
implementation of this poses no difficulty. The complexity comes when various con
strained GEs are built together into a compound GO for which explicit constraints 
about the way the GE components link together must be specified by the user. We 
refer to the latter kind of constraint as an external constraint. We will first consider 
some of the internal constraints. 

Constrained graphlcs appl1catlOn program 

(eg GIC5) 

Library of constra 1 ned GE 00 P5 objects 

I (CGE) 

5tandard graphlcs 11brary 
(G2D) 

Computer graphlcs hardware 

Figure 1 : Software layers in the construction of a constraint system. The standard 
graphics library is not necessarily written in OOP code. 

In order to describe the way schematic diagrams help solve constraints we will 
start by listing some very simple types of constraints. While the geometric iteration 
algorithm has wide generality, it has proven sufficient, given our limited time and 
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Notes: 

FDPS = finite defining point set = the input point set. 

TPS = the tag point set = the output point set. 

GE = graphics element (basic graphics output primi-
tive). 

GO = graphics object (a composition ofGEs). 

entity = the generic term for a GE or GO. 

The methods: 

entity.create 
dynamically creates an instance of the entity class. 

entity.init(FDPS) 
sets the internal parameters for the entity, such as the length of 
fixed length line segments, using an initial user-entered FDPS. 

entity. display 
draws the entity on the graphics screen in its current configura
tion, erasing it first if it is already visible. 

entity.erase 
smart erasure ofthe entity from the screen restores any previous 
background graphics properly. 

entity.assign(FDPS) 
assigns new input point values to the entity. 

entity.enquire(TPS) 
returns the current point values defining the entity. 

entity.nearest_point(P: point-type; vas S: point-type) 
returns the nearest point S on the entity to the given point P. 

entity.destroy 
terminates the existence of a dynamically created instance of the 
entity class. 

Table 1 : Standard GOOP entity methods. 

resources, to consider only a small subset of the possible graphics output primitives 
and consider only two dimensional cases. In particular, most of our tests concern 
the connecting together in various ways, of varieties of constrained line segments 
and occasionally circles and polylines. 
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With regard to line segments the following strains were considered: 

• unconstrained line segment 

• fixed length line segment 

• fixed length hanging line segment 

• fixed angle line segment 

• fixed angle and length line segment 

• fixed end point line segment 

For each of these constrained graphics entities (GEs) there is an object class and 

corresponding schematic box. The point data inputs to any of these boxes are P and 

Q, the desired end points of the particular variety of line segment. The point data 

outputs of the boxes are labelled P' and Q'. (See Figure 2.) The points F and Q' are 

the actual end points that the constrained GE was able to adopt given its inputs 

after working out its own internal constraints. We will now describe each of the GE 

classes listed above. 

p p' 

An mstance of 
a constramed 
GE from the GE 

0 llbrary CGE. O· 

Figure 2: The schematic box for a GE instance from the GE OOP library has a set 

of input points, output points and the box is labelled with the name and type of the 

GE concerned. For the case of line segments suitable inputs and outputs are the 

end points of the line segment. 

For an unconstrained line segment, the end points P and Q can be any non

coincident positions in space, and the outputs will be the same as the inputs i.e. F 

= P and Q' = Q. For a fixed length line segment, say oflength a, input P determines 

the starting position for the GE, and the end position is on the line PQ and such 

that the line segment has the length a. 

The geometric transfer equations are therefore: 

F=P 
Q' = F + a.(Q - P)/IPQI 

[la] 

[lb] 

For the fixed length hanging line segment, the conditions are the same as for the 

fixed length line segment except that Q' is required to be lower than P', i.e.: 

Q'.y < F.y [2] 
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If the result of the computation in equation [1b] violates inequation [2] then Q.y 
is reset to P'.y and Q' is recomputed by equation [1b] until the inequation [2] 
is satisfied. For the fixed angle line, P determines the first end point through 
which the line must pass, i.e. P' = P, and then Q'is the nearest point [the nearest 
point method was shown to crop up in a wide variety of geometric problems in 
references 1 and 4] to Q on the line through P' at the original angle a to the 
horizontal that the line segment was created with. For the fixed angle and length 
line segment Q' is independent of Q, and is determined by P', the length of the line 
a, and its angle a. For the fixed point line segment, the first end point cannot be 
changed (P' = constant), but the second end point can be anywhere in space (i.e. 
Q' = Q). Other constraints we have used include the wall object and the railing 
line segment described later. It may be noted that the algebraic expression of these 
natural geometric internal constraints, in terms of x and y components, is often 
mathematically messy to deal with, and not the simple mathematical functions 
one might wish for. The geometric approach is therefore more preferable than the 
algebraic approach for this practical reason also. 

It is clear that as object classes, many of these classes are subclasses of others, 
and that they form a hierarchy of descendents from the line segment class. Indeed 
many of the constraints mentioned so far could be combined with others to form 
new constrained line segments within this hierarchy. As descendents of the line 
segment class, the constrained classes inherit data and methods from their ances
tors. So also, if we extended the library of GE objects (CGE) to include strains of 
(constrained) circles, strains of area filled polygons and so on then we would be in
troducing several new hierarchy trees each with their separate direct inheritances. 

We now come to considering the composition of the constrained GEs described above 
into new GOs. Since in general there would be several class hierarchies emanating 
from the basic set of unconstrained GEs, and since GOs can be composed from 
any selection of GEs coming from any of these classes, we can expect to need the 
OOP notion of multiple inheritance. However, only one GO class is necessary. We 
require that this new GO class provide the same list of useful methods that every 
GE class has as given in Table 1 and this is not difficult to implement in terms of 
the GE class methods. The FDPS for the GO is the long list of points consisting 
of all the FDPSs for each constituent GE in the order in which the GE was added 
in to the GO. Similarly the output tag point set is the concatenation of all output 
points from the constituent GEs in the same order. The methods for the GO (see 
Table 1) are constructed as sequences of calls to the corresponding method in each 
constituent GE with the appropriate parameters taken from the point lists where 
necessary. However the implementation for the nearest point method for the GO 
takes a different structure: the seed point is fed into the nearest point methods of 
each GE in the GO and the closest output point to the seed point is returned. The 
grouping of GEs into GOs using external (user defined) constraints is described in 
the next section by means of the schematic diagrams. 

3 Schematic Diagrams 

The schematic diagrams link the input point sets and output point sets of any 
selection of constrained GEs to define the composite GO geometrically. There is a 
straight forward transformation from schematic diagram to OOPs code. Consider 
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a linkage from output (point) Ai from the schematic box of graphics element GEl 
say, connecting to input (point) Bj of schematic GE2. In this circumstance we say 
that input j of entity GE2 is controlled by output i of entity GE 1. The corresponding 
OOPs code then consists of a sequence of method calls: first a call to the GE1.enquire 
method to read the Ai point value, then (sometimes) a call to the GE2.enquire 
method to find the current values of the other inputs to GE2 that are not linked to (ie 
controlled by) another GE output, and then finally a call to the GE2.assign method 
to assert the desired inputs for GE2. A sequence of schematic boxes connected 
previous to next becomes a sequence of such calls down the sequence of boxes. If 
the tail of the sequence of schematic boxes rejoins the start ofthe sequence then a 
loop in OOPs code is required. Some simple examples will illustrate this idea. For 
more complex schematic diagrams and for interactively created schematic diagrams 
we resort to the Democracy Algorithm which is described in section 5. 

Figure 3: The schematic diagram for three line segment GEs constrained to form a 
triangle. The constraint equations are effectively:(LS1.Q = LS2.P', LS2.Q = LS3.P' 
and LS3.Q = LS1.P'. 

p 

Q 

Figure 4: The triangle Graphics Object (GO) represented in Figure 3 as three 
component Graphics Elements (GEs), unconstrained line segments knit together 
end point to end point. 

Figure 3 shows a schematic diagram that defines the external constraints for the 
construction of a triangle out of unconstrained line segments, LS1, LS2 and LS3, 
and the corresponding geometry is depicted in Figure 4. If the user selects point 
LS1.P with a pointing device and moves it to a new point X, then when the LS1 
object receives the message LS1.P = X, then its outputs are adjusted according to its 
own internal constraints giving new output points LS1.P' = X, and LS1.Q' = LS1.Q 
for this strain of GE. Then the schematic diagram implies that LS3 must adjust 
so that its input LS3.Q = LS1.P'. Likewise LS2 adjusts so that LS2.Q = LS3.P'. 
Note that in the combined GO only the P inputs of each line segment are useful 
for being selected and moved. The external constraints embodied in the schematic 
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diagram then ensure that the three line segments reform as the closed triangle. 
Only one iteration of the schematic loop is necessary in this case to restore the 
integrity of the GO. Once this is achieved, then the GO is (intelligently erased and 
then) redisplayed. 

This example behaves in a more interesting manner when we replace some or all 
of the unconstrained line segments with various other constrained line segment 
strains. The OOPs code representing the schematic diagram will then iterate more 
than once in its quest for a solution. The looping continues until the point value fed 
back to the start of the loop is roughly equal (to the screen precision) to the current 
point value at the start of the loop and then the GO is redisplayed. (A boolean 
function called "roughly _equal(A,B : poinUype)" is provided in the CGE library for 
this purpose.) It is then also interesting to observe the effects of different sized dis
turbances on different connections in the schematic circuit. For instance in the case 
where we make a triangle from fixed equal-length line segments, small displace
ments in P inputs end up only slightly rotating and shifting the triangle. Large 
displacements however cause it to translate a large distance and rotate always 
such that the edge opposite the end point moved is perpendicular to the direction 
of motion and nearer to the point moved to. And in this case, the manipulation of 
the Q inputs does have an interesting effect: the triangle is rotated with only a very 
small translation no matter how far away Q is taken. Figures 4a to 4d illustrate the 
phenomena. It becomes an interesting exercise learning how to manipulate these 
controls (selecting P or Q inputs for a given side of the triangle and then moving 
them) to position and orient the triangle in any desired configuration. 

(a) (b) 

6 ~' P 

(c) (d) 

6 1>0 
a 

Figure 5: Pulling point P on fixed length line segment 1 away to the left causes 
the triangle to move left and rotate as shown. Pulling Q on line segment 1 to point 
X causes the triangle to rotate as in (d). 

Similar test cases involving polygons of any number of sides and any combination 
of constrained GEs were investigated as well. Another example was the multiple 
pendulum constructed from fixed length hanging line segments. Figures 5a and 
5b show the schematic diagram used for a triple pendulum. It was observed that 
by applying a shift to any join in the pendulum caused the pendulum to change 
configuration to accept the new position if it was a valid one. A time motion applied 
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p 

Figure 6: The screen appearance of a triple pendulum built from three hanging 
fixed length line segments PS1, HS2 and HS3. PS1 also has its initial end point P 
immovable. 

P P' P P' P P' 

PSI HS2 HS3 

o o· o o· o o· 

Figure 7: A schematic diagram depicting the external constraints applying in the 
triple pendulum of Figure 6. PS1 is a fixed position fixed length line segment -
changes on its inputs P and Q only effect the output pOint Q' and P' remains the 
same point. HS2 is a hanging fixed length line segment which is constrained to join 
on to the end of PS1, ie HS2.P = PS1.Q'. Similarly HS3 is a hanging fixed length 
line segment constrained to join on to the end of HS2 via HS3.P = HS2.Q'. If the Q 
end point of PS1 is displaced to point X then a call to the GO display method will 
show that HS2 has moved to keep contact with that end point of PS1. If however 
end point P of HS2 is moved to some point X then a call to the triple pendulum 
display method will show that in this case the new constraint solution is the same 
as the original constraint solution (and the pendulum has not moved). 

to any joint would then make the pendulum swing somewhat realistically even if 
the equations for the disturbance of the joint were not actually solutions for the 
motion of a physical triple pendulum. As the schematic diagram for this GO does 
not include any loops, there is no iteration in this case and the constraints are 
quickly satisfied in one pass. 
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A further constraint object called the wall-type was implemented. This has a method 
called "testeR : poinLtype; var S : poinLtype)" which receives a point R and tests to 
see if it is inside the wall or not. If it is not inside then the method returns S = R. 
If however the point R is inside the wall then the method sends back point S which 
is the nearest point on the wall surface to R. The wall type GE is initialized by two 
points P and Q. The x component ofP is used for the position of the (vertical) wall, 
and the x component of Q is used to say if the wall is on the left or the right of 
P.x. The wall-type GE was used in conjunction with the multiple pendulum, and it 
was required that no output point of a hanging fixed length line segment could be 
inside the wall. Every time a disturbance caused an end point to enter a wall, left or 
right, the code iterates until the endpoint is at the wall surface. An example of this 
is shown in Figures 6a and 6b. It was found that the schematic diagram generated 
new feasible solutions very rapidly to the precision of the graphics screen. 

Figure 8: The screen appearance of a triple pendulum when the user has selected 
left and right walls. If any of the end points of any of the line sements go left of xleft 
or right of xright then an iteration process rearranges the pendulum to a feasible 
solution with the point concerned just touching the wall face. 

Another kind of external constraint GE created was the railing line segment. This 
is just a line segment to which other line segments can be attached. Suppose that 
line segment LS is attached at point LS.P to the railing RL. If a disturbance is 
applied to end point P of LS, say moving it to point X, then the external constraint 
embodied in the schematic diagram brings LS.P' back to a point on RL which is 
the nearest point on RL to X. In this way constructions can appear to consistently 
slide up and down the railing as the user twiddles point positions. We also looked at 
implementing the obstruction constraint whereby two line segments cannot cross 
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P P' P P' P P' 

PSl HS2 HS3 

Q Q' Q Q' Q' 

Figure 9: A schematic diagram to represent the triple pendulum which is con
strained to lie between a left and a right wall as shown in Figure 8, An input point 
to a wall object is passed to the test method which outputs the correct point not in 
the wall. 

over each other. This constraint involved using the intersection schematic described 
in [Rankin, 1990a]. 

As another example we used the nearest point method to cause an arbitrary shape 
to move in such a way that it maintained contact with an arbitrary surface entered 
by the user. A truck profile moves along the mountainous horizon with both wheels 
correctly placed on the ground. (See Figure 10.) Figure 11 shows the geometric 
constructions used in implementing this. The user points to a screen position, 
X say, and the front wheels of the truck are then drawn such that they touch 
the horizon polyline (a GE object provided in the CGE library) at the nearest 
point on the polyline to X. Essentially a circle (another GE provided in the CGE 
library) is constructed for every new placement of the front wheels. The circle is 
intersected with the polyline via the geometric iteration algorithm described in 
reference [Rankin, 1990a]. Once the intersection point Y is known, the truck object 
is appropriately rotated and drawn on the screen. 

A point join of say point A on GEl to point B of GE2 is termed fully constrained 
(or doubly linked) if GEl.A controls GE2.B and GE2.B controls GEl.A, otherwise 
it is termed underconstrained. For example, the singly linked triangle of Figure 3 
is underconstrained. It is easily shown that underconstrained polylines consisting 
of at least one single link may not retain integrity (i.e. may fall apart) when the 
geometric iterations start depending on the firing order. Tests also showed that the 
firing order for the component GEs in a constrained GO made a difference to the 
final equilibrium solution that the iterations settle on. If the three line segments 
of a triangle were pulled widely apart and then geometric iterations brought them 
together again, the six possible firing sequences produced six different resolutions 
with different convergence times. (See Table 2.) In general the number of iterations, 
the time taken and the time per iteration for the doubly linked triangle (Figure 13) 
were all less than or equal to the corresponding values for the singly linked triangle 
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Figure 10: The van is constrained to move along a constant surface only. Initially 
a random polyline is entered as the constraint surface, then the user digitizes a 
point X. The program then puts the front wheel of the car at the nearest point on 
the polyline to X and then rotates it so that the back wheel also just touches the 
polyline. Nearest point and circle polyline intersections are used extensively. 

(Figure 12). A conclusion from these tests is that we should always try to ensure 
that joins of points are doubly linked. 

4 Observed Behaviour 

The author has posited and tested a number of conjectures regarding this method 
of geometric iteration derived from a schematic diagram for the resolution of con
straint problems. In general these conjectures are difficult to prove mathematically, 
mainly due to the complexity of the algebraic equations which correspond to the 
natural geometric constraints, and also due to the mathematical complexity in 
repeatedly applying these functions to themselves. 

Observation 1: 
A geometric iteration process either converges strictly monotonically to a limit point, 
or diverges strictly monotonically, or converges monotonically to a metastable con
dition. 

A metastable condition is where the iterations oscillate between two or more limit 
points. Arriving at the metastable condition does not mean that a feasible solution of 
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(11) 

Figure 11 : In (i) the user digitizes a pOint X on the screen and the horizon polyline 
returns its nearest point Y. In (ii) the front wheel of the van is located at Y and a 
circle with radius equal to the wheel base is constructed about Y. The intersection 
algorithm intersects the circle with the polyline to give point Z. The van is then 
rotated by the indicated angle. 

P-Q 

P LS1 Q 

Figure 12: A singly linked triangle: the position of end point LS1.P controls the 
position of end point LS3.Q, and so on around the triangle, as in Figure 3. 

the constraints does not exist as was seen in [Rankin and Burns, 1990a] - it simply 
means that the algorithm was unable to reach any feasible solution. Monotonic 
divergence implies that the GO will rapidly disappear altogether off the graphics 
screen. A proof of this behaviour pattern for the case of intersection problems was 
outlined in [Rankin, 1990a]. For constrained GO cases, convergence means that 
all defining points converge, and divergence and metastability of the iterations 
means that any of the defining points in the graphics object exhibit divergence or 
metastability as the number of iterations increases. 
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P-Q 

P LS1 Q 

Figure 13: A doubly linked triangle: end point LS1.P controls the position of end 
point LS3.Q and vice versa, and similarly at the two other joints around the triangle. 

Notes: 

NI = number of iterations taken. 
MS = time taken in milliseconds. 
Til = time per iteration in milliseconds. 

Timings: 

Sequence 
123 
132 
231 
213 
312 
321 

singly linked triangle 
NI MS Til 
7 220 31.4 
13 380 29.2 
6 170 28.3 
13 380 29.2 
7 220 31.4 
12 330 27.5 

Table 2: Timings for various sequences. 

Observation 2: 

doubly linked triangle 
NI MS Til 
6 160 26.7 
9 270 30.0 
6 170 28.3 
13 380 29.2 
6 160 26.7 
13 330 25.4 

If the set of constraints has no feasible solution then the geometric iteration will 
diverge. 

We can easily find examples where the algorithm diverges. Consider for instance a 
fixed length line segment with non-zero length where the output point Q'is fed in as 
the new input end point P. The line segment will very quickly go to infinity. Another 
example is to get the algorithm to find the triangle satisfying the requirement that 
the sum of the lengths of two sides of the triangle is less than the length of the third 
side. Both of these examples apply geometric constraints that cannot be satisfied 
and for which the algorithm rapidly diverges. 

Observation 3: 
If there are feasible solutions to the set of constraints, then there is a basin of 
attraction such that if the seed point is selected in this basin then convergence on a 
solution is assured. 

Again as this observation applies to any of the defining points in the iterations 
implied by the schematic diagram. In contrast to the geometric intersection prob-
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lems considered in [Rankin, 1990a], there are many Voronoi diagrams and basins 
of attraction for the constrined geometric objects because there is generally more 
than one defining point in the schematic diagram. 

Observation 4: 
If there are feasible solutions to the set of constraints, then the iteration process will 
either converge to a single limit point inside the feasible solution subspace, or else it 
will oscillate between two limit points both of which are outside the feasible solution 
subspace. 

P2 

Q1 

Figure 14: The fixed length line segment P101 has end point Pi moved to the 
position P2. The internal constraint for this GE then sets the other end point to 02 
a point on the line P201 at distance a from P2 towards 01. The consequence of 
moving Pi by J(P = P2-P1 is that 01 moves by 15 0 = 02-01. The length of vector 
15 0 is always less than or equal to the length of vector JP. 

The following points are significant in proving these theorems. Firstly, if the set of 
linkages in the schematic diagram forms a directed graph (i.e. has no loops) then no 
iteration is involved and the constraints will always be solved in one pass through 
all links and so the above observations become trivially true. When we have loops 
in the schematic diagram we must consider the size of the feedback disturbance 
compared with the size of the input disturbance. Suppose that a vectorial point 
displacement of OP is forced in at the start of the loop. This travels down the links 
of the loop and finally comes back to the start ofthe loop as a vectorial displacement 
JQ. If we always have IJQI < IOPI then it can be expected that the iterations will 
converge rapidly. For example, this condition can be easily shown to be virtually 
always true in the case of disturbing fixed length line segments. Figure 14 shows a 
displacement OP of end point P resulting in a displacement JQ in Q' which is always 
such that IJQI <= IOPI, equality holding only when OP is parallel to PQ. Disturbing 
one end of a string of non-collinear fixed length line segments linked end to end 
will therefore result in a much smaller disturbance on the last end point along 
the string. This proves convergence for the case of geometric iterations to restore 
a disturbed single polygon loop from an initial (feasible) configuration. Programs 
visualizing examples of these cases gave rise to some exotic curves depicted in 
Fugure 10. The envelopes in Figure 15 and Figure 16 arise from considering all 
possible first displacements of the vertices of the polygon (whose edges are of fixed 
length) arising from the disturbance ofthe first vertex of the polygon where IOPI is 
a fixed parameter of the curves. 
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Figure 15: The envelopes of first moves for the vertices of a triangle composed 
of (equal length) fixed length edges. The displacement of the first vertex is to any 
point on a circle of radius 40 units centered on that vertex. Note that the resulting 
displacements of the third end point form a small curve entirely within the circle of 
radius 40. 

Nr ot vertices:: ? [4] 

n :: ? [200J 

radius:: ? [40] 50 
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Figure 16: The envelopes of first moves for the vertices of a square composed of 
fixed length edges. The displacement of the first vertex is to any point on a circle of 
radius 40 units centered on that vertex. Note that the resulting displacements of the 
fourth end pOint form a small curve entirely within the circle of radius 40 (smaller 
than the resulting curve of Figure 15). The envelopes for the square are also more 
complex than the envelopes for the triangle. 

5 Interactive Construction and the General Democracy Algorithm 

For interactive construction of a constrained GO, we need to be able to represent 
the network of connections in the corresponding schematic diagram as a dynamic 
data structure that grows as the user adds more constrained GEs and external 
constraints between the constrained GEs. The first step in doing this is to construct 
a linked list of all the constrained GEs that the user calls upon in chronological 
order as he uses them. He may for instance be selecting instances of GE strains 
from a menu. Upon selecting a GE for use, the software must dynamically allocate 
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the object on the heap, and create a list node containing a pointer to that object. 
The user determines the parameter values for the selected GE by placing it on the 
screen using a pointing device such as the mouse to specify its finite defining point 
set (FDPS - the input parameters for the GE - see reference [Rankin, 1990a]). The 
nodes in the list contain other useful information such as slots for entering the 
input points and output points, GE graphics attributes (such as colour) and the 
pointers needed for maintaining the linked list. Additionally the list nodes contain 
the schematic diagram link pointers. For each of the input points there is a slot for a 
pointer to a GE object (the "from pointer") and a parameter ill integer. The pointer 
if not nil indicates that that particular input point comes from (i.e. is controlled 
by) the output point given by the parameter ill of the GE object pointed to. These 
slots serve to provide the source information for obtaining the input point values 
from. If the from pointer is nil then the input value is taken from the corresponding 
input point slot in the node, otherwise the contents of that input point slot are 
replaced with the point value of the output point pointed to by the from pointer. 
This processing is done only when the geometric iteration algorithm fires up. The 
implementation ofthis data structuring is somewhat involved and requires variant 
records of object pointers and so forth. 

We have now described the data structure dynamically constructed at run time, 
which lists all GEs used in a schematic diagram, and embodies all connections 
between GEs in the schematic diagram through the from pointers. We next need to 
be able to fire up the activity ofthe schematic diagram, and get it iterating through 
to a constraint solution. Whereas with the hard coded geometric iteration OOPs 
code the order of calling the object methods is known in advance, such is not the case 
here. Therefore we have relied on a new general approach called the Democracy 
Algorithm which works as follows. There is one code loop only - a continual loop 
through all GEs in the GE list. Each GE node is tested in turn to see ifits constraints 
are satisfied or not. To test a GE node, the input point values are first sought, a 
snap-shot is taken of these values and then they are applied via the GE.assign 
method for the indicated GE of that node. Next the GE.enquire method for the GE 
of that node is called up to fill in the output point values into the appropriate slots 
in the node. The snap-shot values are compared with the output values (using the 
"roughly_equal" procedure). Any significant differences mean that the constraints 
are not yet fully satisfied for that GE and the looping will need at least another 
iteration. Even though this algorithm works on paying attention to individuals 
and their needs in an order not suggested by the schematic diagram (which might 
be compared with an organization chart indicating the chain of commands) it has 
been shown to work just as well and enable constraint resolution to be achieved. 
Each time around the loop we recheck constraint satisfaction for each GE because 
satisfaction in one iteration does not necessarily mean satisfaction in the next 
iteration due to changes induced into the outputs of other GEs that affect the GE 
in question. This algorithm is highly suited to parallel processing architectures 
which would arrive at the constraint solution at a speed roughly proportional to 
the number of processors. 

A general graphics interactive constraint system program called GICS was imple
mented to test these ideas. Figure 17 shows a typical screen that the user works 
with, and a GO constructed on the graphics area. The different strains of GEs are 
coloured differently by the program (but shown in Figure 17 with labels instead) to 
enable the user to visually distinguish them. Again we are working, in the current 
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Figure 17: One of the screen views in the GICS program. After (several constrained 
GEs have been selected from the menu and drawn on the screen using the graphics 
pOinter system, the user can select "twiddle" and then observe the effects of shifting 
some of the points around. 

version, with varieties of constrained line segments only. All the tests that were 
done with hard coded geometric iteration algorithms derived from schematic dia
grams were repeated on the GICS program and the constrained GOs were observed 
to maintain their integrity and respond rapidly to disturbances equally well as in 
the simpler hard coded cases. 

The GICS program constructs constrained GOs interactively without reference to 
a schematic diagram by making the following reasonable assumptions. Whenever 
the user places a line segment LS such that LS.P is roughly equal to an end point 
of any other line segment previously drawn, then the user wants that second end 
point to control the input point LS.P. Likewise for the placement of end point LS.Q. 
Furthermore, if end point LS.P is roughly equal to the nearest point to LS.P on any of 
the railing line segments in the dynamic list then it is assumed that the user wants 
end point LS.P to be constrained to lie on and slide along that railing. Likewise for 
the placement of end point LS.Q on or near railing line segments. Because the user 
does not have access to the schematic diagram there are some limita~ions on how 
to make constrained GOs. For example, the controlling entities have to be drawn 
before the controlled entities. This means also that closed loops in control are not 
available. Another consequence is that constraint links also cannot be changed. 
Another consequence of this interface is that triple joints have to be constructed 
carefully - double linkage is not possible and then the order of firing can mean the 
difference between constraints being maintained or failing to be maintained. Also 
when interacting with the screen image of the GO alone, input and output points 
at a vertex cannot be visually distinguished, and similarly the desired end point 
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cannot be distinguished when two line segments meet at a vertex. A more powerful 
constraint systems design program is clearly called for: one in which the user 
can interactively edit schematic diagrams. Nevertheless a significant advantage of 
this direct screen approach though is that the GO is always created in a feasible 
solution initially. The conjectures in section 4 then would indicate that we will have 
convergence to screen precision in finite time as is indeed observed. 

6 Conclusions 

We have found that geometric iterations are very efficient at finding new feasible 
solutions to geometric constraint systems which have been disturbed away from 
an initial feasible solution. Schematic diagrams which state precisely the nature of 
the geometric constraints in the composition of the GO from various strains ofGEs 
are used in place of sets of equations. The geometric iteration OOPs code derives 
directly from the schematic diagrams. The cases where the constraints are known 
and fixed beforehand are easily dealt with by hard coding the OOPs geometric it
eration code derived from the schematic into the application program. The more 
general case where constrained screen objects are constructed ad hoc by the user 
require a delicate data structuring and extensive use of the dynamical allocation 
facilities of OOPs objects and then the also the associated facilities for calling up 
the methods of these temporarily created objects. Nevertheless the geometric iter
ation method was found to generalize to an algorithm here called the Democracy 
Algorithm. According to the Democracy Algorithm, each object/person in the popu
lation gets an equal chance at getting his own constraints/needs satisfied and these 
chances cycle through every object/person until such time as all constraints/needs 
are acceptably met. Our initial indications on testing the Democracy Algorithm 
are that it works very effectively. However, different firing sequences converge to 
different solutions. A program that tested the algorithm enables a great variety of 
constrained GOs to be interactively constructed and disturbed. The program actu
ally by-passes the need for the user to construct a schematic diagram for each GO 
by making some restrictive assumptions about what the user wants to be linked 
together. As a result of this, all constrained GOs constructed by the program are 
initialized in a feasible solution for the GO. This is desirable not only because the 
user immediately sees what he wanted to construct, but also because, by the obser
vations given in section 4, the Democracy Algorithm has the best chance offinding 
a new feasible configuration for the GO after it has been disturbed. Since GOs can 
be built up using previously created GOs as components, we can have separate 
Democracy Algorithms running at all levels in hierarchically constructed GOs with 
each Democracy Algorithm maintaining the integrity of a GO at a given level in the 
hierarchy. The Democracy Algorithm is highly suited to OOP on parallel processor 
hardware. Both the hard coded geometric iteration technique and, the Democracy 
Algorithm are techniques for solving constraints that are very neatly fitted into 
the OOP paradigm unlike the traditional approach to the constraint resolution 
problem. 
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ALIEN: A Prototype-Based Constraint 

System 

Eric Cournarie and Michel Beaudouin-Lafon 

The main objective of the work reported in this article is the use of constraints in graphics 
and user interfaces. We believe that constraints need to be integrated in a powerful program
ming paradigm in order to be usable in large-scale systems. The system we present embeds 
constraints in a prototype-based model. A prototype object (a template) contains internal con
straints, and exports slots so that instances of the prototype can be further constrained. Instan
tiation uses delegation to share constraints between instances. As a consequence, changing 
a template has an immediate effect on all its instances. The model also features generic tem
plates and skeletons to create complex constrained objects. The system is open and extensible: 
new constraint types can be defined and alternative solvers can be used. The basic solver uses 
local propagation. 

The article presents the model and the constraint system. Then we discuss the performance 
of the current implementation. Two running applications are described: a graphical editor for 
constrained objects and a graphical environment for the Occam parallel programming language. 
The last section compares ALIEN to other existing systems. 

This work is partially supported by the AVIS-UIS project, within the framework of the Eureka 
Software Factory, and by CNRS Greco de Programmation. 

1 Introduction 

The idea of using constraints for graphics is now widespread and a number of sys
tems actually use them. The nice properties of constraints are now well-known, 
such as their ability to describe relationships in a declarative inst~ad of algorith
mic ways. There is also significant works on constraint solving techniques so that 
constraints now seem ready to be used widely in graphics as well as other domains. 

The reality, however, is that few real size systems actually use constraints. It might 
be that constraint systems cannot handle large-scale systems (thousands of con
straints) with an acceptable response time. It might also be that beyond a certain 
number, constraints are difficult to master by the programmer. The motivation 
behind the work reported in this article is this second assumption: programming 
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with constraints is not easy, and structuring mechanisms are needed to help the 
programmer maintaining large systems driven by constraints. 

Our first attempt has been to use an object-oriented framework and try to integrate 
constraints in this framework. We were not satisfied with the result because of a 
number of problems raised by the pure (i.e. class-based) object-oriented paradigm. 
Nevertheless the object-based approach was still tempting, and we actually moved 
to a prototype-based model. The reasons for this final choice are described in the first 
section of this paper. The following sections go into more details about ALIEN, our 
prototype-based constraint model and system. Then we describe some applications 
being developed with this system. In the final section ALIEN is compared with other 
related work. 

2 ALIEN: From Objects to Prototypes 

The aim of ALIEN is to provide the programmer with a simple model to create and 
manage constrained objects, especially in a graphics world. The kinds of activity 
we expect from the programmer is to create objects, use constraints to describe 
their internal rules, put objects together and specify constraints between them, 
reuse existing objects and change their behavior. A major goal is to have the system 
support large applications with good performance and programming ease. 

The first version of ALIEN was based on a pure object-oriented model, i.e. a model 
based on classes, instances and inheritance. We finally rejected this model after 
having identified the following weaknesses with respect to our goals. 

A class defines the behavior of a set of objects, and all the instances of a class 
have the same behavior. This means that a new behavior usually leads to the 
definition of a new subclass. Such subclassing is needed even if objects differ in 
detail. Defining many classes is not only cumbersome, it also limits reusability. For 
instance, if we want to create a fixed-width rectangle, we must create a specific 
subclass of the class rectangle, and instantiate this new subclass. Alternatively, we 
could instantiate a rectangle and add a fixed-width constraint to it, but this would 
mean that rectangles must know how to handle constraints, and that constraints 
have access to the internals of a rectangle. Both are difficult to accept in a pure 
object-oriented model. 

Another drawback of classes is that they freeze the behavior of objects. There is no 
strong support for dynamically modifying or enhancing this behavior, especially in 
compiled languages. For instance it is difficult to change the fixed-width rectangle 
class into a fixed-height rectangle class dynamically, with an immediate effect on 
all the instances of that class. Class-based languages just do not expect classes to 
change. 

Finally, class-based languages do not allow the sharing of common properties be
tween objects of distinct classes, unless the classes are tied by an inheritance link. 
For instance, it is not possible for an ellipse class to use the fixed-width property 
defined in our fixed-width rectangle class. Even with multiple inheritance, one can 
hardly imagine inheriting the fixed-width rectangle class from the rectangle class 
and a fixed-width object class, because there is no simple means to describe an 
abstract fixed-width object class. 
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These problems suggest the use of a model that supports the dynamic aspects 
that we need: instance-level properties, dynamic modification of classes and free 
inheritance of properties. For this reason, ALIEN is now based on prototypes instead 
of classes and instances. It uses delegation instead of instantiation. 

Prototypes and delegation support the sharing of properties [Lieberman, 1986]. 
Such a technique provides an important gain in flexibility, because the local modi
fication of a shared property has a global impact on the system. In addition, dele
gation allows prototypes to change their behavior dynamically. Another feature of 
prototypes is that all objects are potential prototypes and hence can generate new 
objects. There is no longer a difference between the generators and the generated 
objects, like with classes and instances. Self[Ungar and Smith, 1987] demonstrates 
the flexibility ofthe prototype model. 

The status of constraints in our model must be clearly defined. Constraints are 
relationships between objects. We use them to define behaviors declaratively in
stead of having those behaviors hard-coded by the programmer. Thus, constraints 
are objects that can be created at run time. The constraint solver is a part of the 
run-time environment that supports and manages these constraint objects. 

To sum up this model, constraints define the behavior, prototypes support sharing 
and dynamic modification of behaviors and objects provide the general framework 
of the system. 

3 Objects and Slots 

In ALIEN, we call slots the instance variables that can be connected to constraints. 
Slots are typed: basic types include integer slots, character slots, color slots, etc. 
Composite slots are similar to the records found in many programming languages. A 
composite slot contains a number of slots and is itself a slot, i.e. it can be connected 
to constraints. For instance, a point slot holds two integer slots, one for the X 
coordinate and one for the Y coordinate. Thus, one can constrain the entire point, 
or only the X coordinate, or both of them. 

An object in ALIEN contains one composite slot, representing the attributes of the 
object. For instance, the composite slot of a rectangle has two point slots for its 
shape, color slots for its background and border color and an integer slot for its 
thickness (figure 1). New slots can be added to the objects dynamically. An object can 
also contain the usual instance variables, which have no impact on the constraint 
system, and thus will be ignored from now on. 

A slot behaves like a normal variable in a programming language. The only differ
ence is that the constraint solver is run when a slot is assigned a new value. Thus, 
the constraint solver is invisible to the user of ALlEN. 

During the resolution, a slot keeps its new intended value in a candidate, used as a 
temporary value. This has two advantages: first, it is possible to backtrack on some 
choices. Second, constraints are able to use the old value of the slot. For instance, 
a constraint between a point and a line can state that the point must stay on the 
same side of the line. Such a constraint needs the old and new positions of the point 
to check whether it is verified. 
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Figure 1 : Slots. A rectangle contains 6 basic slots and 3 composite slots: two pOints 
and the whole object. The right part of the figure shows the graphical representation 
of rectangles and constraints that we use in the remaining of the article. 

There is no limitation on what kind of value a candidate can hold. For instance, 
if a constraint defines that a point must stay on a line, then the candidate of this 
point can hold the equation of the line instead of one arbitrary point .of the line. 
If the same point is under another constraint like a fixed distance from a given 
point, then the candidate value will become (in the best case) the set of two points 
satisfying both constraints. 

Slots are eventually updated with their candidates when the constraint solver 
has finished. If a candidate holds a non unique value (like the equation of a line 
or a set of points), it is asked to choose one. In order to satisfy the principle of 
least astonishment, it should select the nearest value according to its initial value. 
When a slot is actually updated with its final value, its owner object is notified. In 
a graphics environment, this is used to redisplay the object. 

Slots, Constraints, and the Object-Oriented Paradigm 

One may be surprised that we use slots to define constraints on objects. A big virtue 
of the object-oriented paradigm is to provide for encapsulation of data. Slots may 
look like a way to expose the internal state of an object to the outside world. In 
effect, constraints in ALIEN do change the values of the slots they are connected 
to, thus bypassing any access protocol that the object may want to impose. A more 
traditional approach would be to ask the object for the value of a slot and to ask 
an object to change the value of a slot. This can be used in a constraint-based 
system, as examplified by Rankin in another chapter of this volume [R. Rankin, 
1991]. Nevertheless, we feel that slots provide an interesting alternative, without 
breaking the objeCt-oriented paradigm. 

In order to encapsulate its state, an object can define an access protocol for a slot 
by adding internal constraints on that slot. These constraints will be handled by 
the constraint solver, like any other constraint. If this happens to be impractical or 
insufficient, one may use a slot like an active value: reading or writing the value 
of a slot triggers a method of its owner object, which can then implement any 
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access protocol to its internal state. This feature can be related to prototype-based 
languages like Self which have unified state and behaviour by using messages to 
access the state. This makes it possible to define fake state variables which are 
actually computed. Our slots provide the dual view of this unification, by which the 
behavior is triggered by state changes. 

4 Templates, Instantiation and Cloning 

A template is a prototype that contains component objects (possibly other tem
plates), internal constraints, and exported slots, i.e. slots that are visible from 
outside the template. The main property oftemplates is their ability to use delega
tion. A template has a set of proxies, which are themselves templates. When a slot 
of a template is modified, this triggers the constraints on this slot as well as the 
constraints defined in the proxies of this template. This is achieved by delegating 
the modification to the proxies, as shown in figure 2. By changing the set of its 
proxies, a template may borrow the behavior of other templates dynamically. 

Exported slot 

f 

I 

f 

I 

I 

I 

I 

I 

I 

I 

Hidden slot 

Template 

I 

I 
I Delegation 

Instance 

Figure 2: Proxy. An instance delegates the assignment on its slots to its proxy. 

The usual way to produce a template that has a proxy is by instantiating an ex
isting template. In figure 3, two levels of instantiation are used to define an object 
made of two vertically aligned rectangles. Note that there is no distinction between 
generator templates and final objects: the instance INST is a template, which can 
be instantiated again. Note also that instantiation duplicates the slots of the gener
ator while it shares its internal constraints. Slots must be duplicated because each 
instance will have different values for them. Constraint sharing maintains "live 
links" between templates, so that adding or removing constraints in a template has 
the expected effect on all its instances, with no overhead. 
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Figure 3: Templates. LA is a template containing two rectangles constrained to be 
left-aligned. LRA is an instance of LA, with an additional right alignment constraint. 
INST is an instance of LRA, and thus inherits these two behaviors. In this example, 
INST does not define any new constraint so that INST and LRA have the same 
behavior. The dashed lines indicate inherited alignment constraints. 

INST 

As an example, a constraint could be added to LA to specify a fixed distance between 
the two rectangles. LRA, INST and the other instances would inherit this new 
constraint. This means that a resolution would take place to compute the values of 
the slots that are now under the new constraint. A similar resolution would take 
place if a constraint was removed, or modified. 

As an alternative to instantiation, templates can also be cloned. Cloning duplicates 
the slots as well as the internal constraints of the template. A cloned template has 
no proxy, hence it looses any link with its generator. 

It is worth noting that delegation does not change the semantics ofthe constraints. 
When a resolution takes place, the result is the same as if all templates had been 
cloned instead of instantiated. For the solver, delegation only implies some extra 
bookkeeping to know exactly which constraints are involved in the proxies of the 
objects. 

Genericity 

A template may contain parameters, thus defining a generic template. Instantiation 
or cloning of generic templates involves argument-passing, as shown in figure 4. 
The generic template becomes a proxy of its arguments. Like a normal template, 
the constraints of a generic template are shared through delegation. Cloning a 
generic template creates a new template by copying the arguments as well as the 
constraints and slots of the generic template. 

A side effect of generic template instantiation is to provide composition (see fig
ure 5). Composition is achieved by plugging one generic template into another, by 
cloning or instantiation. The arguments of one of the generic templates are param
eters of the other one. They are still arguments in the final template. 
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Figure 4: Generic template. A generic template containing two horizontally aligned 
objects is instantiated with a rectangle and an ellipse. The dashed lines represent 
the constraints inherited from the generic template. 

Figure 5: Composition of generic templates. A generic template containing two 
horizontally aligned objects is composed with a generic template containing two 
objects with a fixed horizontal distance. The result is a generic template containing 
two horizontally aligned objects separated by a fixed distance. 

Iterative Constraints 

Iterative constraints are an experimental feature of ALIEN. Iterative constraints 
provide a way to capture in a declarative way the insertion and removal of objects 
in a "constrained set". The objects in a constrained have similar constraints, like 
for instance the items in a menu. The constrained set automatically changes the 
constraints when an object is added to or removed from the set. A constrainted 
set is represented by a skeleton which is a specialized generic template, whose 
parameter objects are distinghuished elements of a list (first, previous, current, 
next). Constraint are defined between the different parameters. Figure 6 shows a 
sample skeleton for a vertically aligned list. 

Skeletons are special generic templates because they are associated to a set of 
objects. The set is monitored by the skeleton so that each change triggers a new 
instantiation. To perform this instantiation, the skeleton needs to know the se
mantics of its parameters. For instance the list template knows which element is 
the first, the previous, the current, etc. Thus creating a skeleton not only requires 
the creation of the generic template, but also the definition of the instantiation 
method. This is currently hard-coded in the skeleton, but of course we would prefer 
a declarative specification, which we have not found yet. 

5 Constraints 

A constraint in ALIEN is an object. The word "object" is used here to refer to the 
class-instance model: constraints belong to classes in the usual sense. A sample 
constraint class is the class oflinear constraints. Classes for equality and inequality 
can be subclasses of the linear constraint class. Another sample constraint class 
is the class of fixed distance constraints. Constraints are multiway: they are not 
oriented. 
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Figure 6: Iterative constraint. Each item of the list is aligned with the first element 
and each item is a fixed distance below the previous one. When the text was added 
to the list, the Below constraint between the ellipse and the rectangle was removed, 
an LA constraint between the text and the first element (the ellipse) was added, 
and two Below constraints where added (one between the text and the ellipse, the 
other between the rectangle and the text). 

All constraints contain: 

• a set of entries. An entry can be linked to at most one slot, while a slot can be 
linked to several entries. Entries, like slots, are typed. 

• a level in the hierarchy. 

• a rule, i.e. a predicate that tests whether the constraint is satisfied or not. 

• a satisfaction method, which computes the new values of unknown slots. 

• an internal state private to the constraint. 

As an example, a linear constraint has a variable number of entries, one for each 
variable in the linear equation or inequality. The state of a linear constraint contains 
the coefficients of the variables and the constant value of the equation. A fixed 
distance constraint is simpler: is contains two entries of type point, and a state 
holding the distance to keep between the two points. 

Control over Constraint Behavior 

ALIEN offers two means for controlling constraint behavior: global control over 
the network of constraints and local control over a particular constraint. Global 
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control is necessary to specify what happens when the network of constraints is 
over-constrained or under-constrained. This also has the advantage of preserving 
the principle of least astonishment. Global control of over-constrained systems is 
addressed by a hierarchy, as introduced by Borning et al. [Borning et al., 1989]. 
Resolution of a hierarchy of constraints proceeds by solving all higher-level con
straints, and adding one level after the other until no solution can be found. Hence, 
with such a hierarchy, the user can assist the system in finding which constraints 
to leave unsatisfied. Under-constrained systems are easier to manage because one 
can assume that each slot has a constraint to keep its previous value. Such implicit 
stay constraints have the lowest level in the hierarchy. 

Object 
Linear constraint 

Object 

rectangle 
Center 

point 

Figure 7: Master and Slave entries. The point on the right is vertically centered 
with respect to the rectangle. The constraint represents the equation Top + Bottom 
- 2Y = 0 . The constraint state contains coefficients +1, +1, -2 and the constant 
O. 

Local control is used to help the system in solving a particular constraint. First, a 
multi way constraint may be turned into a one-way constraint by using two different 
entry types: master or slave. When the slot of a master entry is modified, the 
constraint can modify any other slot. When the slot of a slave entry is modified, the 
constraint can only modifY slave slots or its internal state. In figure 7, the point 
is centered vertically with respect to the rectangle; moving the rectangle results 
in moving the point. On the other hand, moving the point does not modify the 
rectangle but the alignment, represented by the constraint's state (in this case the 
constant and/or the coefficients). If the slave entry was a master, moving the point 
would reshape the rectangle. 

Another means of local control addresses the problem of ambiguities. In the pre
vious example, if all entries are masters, then moving the point must change the 
rectangle. However there are many ways to reshape a rectangle ~o that a given 
point is centered vertically. To give a hint to the constraint, entries can be given the 
prefer -stay property. The constraint will then try to leave such entries unchanged. 
In our example, if the entry corresponding to the top slot was flagged prefer _stay, 
the constraint would change only the bottom slot of the rectangle. If both the top 
and bottom entries were flagged, the constraint would be solved on both. In this 
case it would try to minimize the change of both slots. Moving the point would then 
result in moving the whole rectangle. 



www.manaraa.com

6. ALIEN: A Prototype-Based Constraint System 101 

As shown by this simple example, achieving a good control over constraints is not 
easy. It must be pointed out that global control is used by the solver, while local 
control is used by the constraints. Each control is independent of the other. This is 
an important feature, to insure that different constraint classes can have different 
local controls available, and to insure that the strategy ofthe constraint solver can 
be changed without changing the constraints. 

Granularity of Constraints 

Constraints in ALIEN have different levels of abstraction. Low-level constraints 
like linear equations connect basic slots. High-level constraints connect composite 
slots. Because objects are made of one composite slot, constraints on objects can 
be defined. Typical constraints that can be defined only on objects (or composite 
slots) include topological constraints like stay-inside or do-not-intersect. These con
straints can be defined only by using global information on the objects to which 
they apply. 

A number of geometric constraints apply to points and thus have medium granu
larity. Such constraints include fixed-distance between two points, fixed orientation 
of a segment, fixed angle between three points, etc. Defining a point as a compos
ite slot instead of a basic slot is important because constraints can be set on the 
individual coordinates of the point as well as on the point itself. 

The solver handles constraints on composite slots as if they would apply to each com
ponent of the composite slot. Hence, the granularity of constraints has no particular 
semantics for the solver. In particular, granularity does not define the hierarchy of 
constraints, which is defined independently. 

6 Constraint Solving 

Constraint solving has to deal with several challenges. First of all, a constraint 
network can be under- or over-constrained, depending on whether the constraint 
has more than one solution or no solution at all. Finding all the solutions can lead 
to a combinatorial explosion. Thus, the constraint solver must avoid this explosion, 
but still deduce useful and expectable results. On the other hand, if there is no 
exact solution, one can expect the solver to give the ''best'' one, according to some 
error measure. 

However, general constraint satisfaction is NP-complete [Mackworth, 1977]. This 
means that a particular constraint solver is most of the time application dependent. 
We think the solution is to provide an easy way of changing the solving technique, 
even at run-time. In ALIEN, a basic constraint solver is used, but it is able to 
delegate the work to a more specialized solver. Such a solver can easily added to the 
architecture of ALIEN. Thus, particular applications can use ALIEN and still provide 
their own solver. 

The basic solver of ALIEN is based on local propagation. Local propagation is the 
fastest technique, although it fails in some cases, in particular when there are 
cycles. Local propagation does not make any assumption about constraint types, 
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unlike other solving techniques. For instance a numerical technique like relaxation 
works only with linear constraints. With local propagation, any kind of constraint 
can be used. 

Our approach is to have an extensible system, by separating as much as possible 
the constraint solver from the constraints. However, in order to be able to call a 
specialized solver, one must know the constraint types involved at resolution time. 
This is why our solver splits the work into two phases: first, it collects all constraints 
that are suspected to be unsatisfied, then it calls the resolution module on this set. 

To insure the separation between the solver and the different constraint types, a 
constraint must have three properties: it has to be able to tell whether it is satisfied 
or not (its rule), to resolve itself (its satisfaction method) and to say whether it has 
enough information to be solved. This last property is used by our local propagation 
resolution to order the constraints to solve, taking into account their level in the 
hierarchy. 

As already stated, the impact of delegation and constraint sharing on the solver 
is minimal. When collecting shared constraints, the solver keeps the reference of 
the instance that initiated the delegation. This reference will be used at resolution 
time to get the values of the instance slots on which the constraint will work. When 
the constraint is solved, the new values are returned to this referred instance. 

History of Resolution 

An interesting improvement of the constraint solver is based on the history of pre
vious resolutions. This is motivated by the assumption that the constraint solver is 
often triggered in the same way (that is by modifying the same slots). For instance, 
in the context of graphics, when objects are dragged, the same resolution is done 
for each move of the mouse. Keeping a history has two major advantages: the con
straints need not be collected again, because they are the same as for the previous 
resolution, and the previous ordering is still valid. Thus, the solver needs only call 
the constraint resolution methods. 

EtEt··· 
Figure 8: Example 1. n rectangles are constrained to have a constant width and 
to be 20 pixels apart from the previous one. Performance is measured when the 
left side of the first rectangle is dragged. 

This improvement is invalid if anything has changed between the two resolutions, 
like for instance if constraints have been added or removed. We are currently 
studying the integration of the delta-blue algorithm [Freeman-Benson, 1988] in 
the solver to optimize the insertion and deletion of constraints. This integration is 
made difficult by our constraint sharing. 
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Figure 9: Example 2. Performances are measured when a corner of the outer 
quadrilateral is dragged 

Performance 

Performance has been measured in two situations, which are related to experi
ments with ThingLab II [Maloney et aI., 1989]. The first one (figure 8) features a 
simple ordering of constraints while the second (figure 9) is the "famous" nested 
quadrilateral example [Borning et aI., 1989]. 

Our measurements are split into two times, corresponding to the two tasks of the 
solver. The first time measures only resolution, while the second sums this resolu
tion with the time spent in collecting the constraints. The time to draw is not taken 
into account as it depends on the graphics subsystem. The last time, playback time, 
indicates the successive resolution time due to the history optimization described in 
the previous section. These measures have been performed on a Sparc workstation. 

Example l' 
Rectangles Constraints Resolution time Total time Playback time 

250 499 0.1 0.4 0.1 
500 999 0.4 0.7 0.2 

1000 1999 0.7 1.5 0.4 
2500 4999 1.9 3.9 1.2 

Example 2' 
Quadrilaterals Constraints Resolution time Total time Playback time 

10 92 0.3 0.3 0.0 
20 192 1.4 1.4 0.0 
30 292 3.5 3.6 0.1 
50 492 10.7 11.0 0.1 
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These examples show that the critical point of our basic solver is the resolution 
phase, i.e. the ordering of constraints. A possible optimization, which we have not 
tried yet, is to keep track of the last computed slot. Further constraints to solve are 
most of the time near this slot (this is the strong assumption oflocal propagation). 

The last set of measures shows the impact of instantiation: the rectangles of the 
first example have been instantiated from a fixed-width rectangle template. The 
table below shows a time factor of 5 when using instantiation. The difference is 
due to the frequent switches between the instances, especially while collecting con
straints. We have not yet optimized instantiation like we have optimized the basic 
solver. We expect to have a time factor of 2 with a few simple optimizations, which 
we think is acceptable. The gain in memory space has not been quantified yet. 

Example 1 with instantiation' 
Rectangles Constraints Resolution time Total time Playback time 

250 499 0.5 2.2 0.3 
500 999 1.8 7.4 1.2 

7 ALIEN for Graphical Applications 

The intended use of ALIEN is to build graphical applications. It is developed for 
this purpose within the project Avis-UIS, a subproject of the European Eureka 
Software Factory (ESF) project. The model defined by ALIEN is being used in a 
semantic drawing tool now under development within Avis-UIS. The applications 
described in this section are currently running. The first one is a graphical editor 
for constrained objects, which we use to test ALIEN. The second one is a graphical 
programming environment for the parallel programming language Occam. Both 
applications use XTV [Beaudouin-Lafon et aI., 1990], a graphical toolbox that we 
have developed also within Avis-UIS. XTV provides extensible structured graphics 
and input handling on top of the X Window System 

ALIEN is currently implemented in C++, as a library of classes. The source code is 
around 16000 lines and the compiled library is 530 Kbytes on a Sparc. ALIEN is 
not a language, although the model it is based on would easily lead to a language. 
We found that the cost of designing and implementing a new language was not 
worth the trouble. A library makes it easy to integrate ALIEN into applications, 
while having a language would imply the development of applications with this 
language. Because in most applications constraints are only a tool, we believe that 
providing a library is better than providing a language. 

A Graphical Editor for Constrained Objects 

Although we do not want to define yet-another-Ianguage to validate ALIEN, building 
constrained graphical objects with a conventional language is sometimes tedious. 
Thus, the first application developed with ALIEN is a graphical editor to build and 
test constrained graphical objects. 
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The editor is dedicated to prototyping objects and their behavior. First, an objet 
can be designed in an editing view. Its slots are displayed and the user can bind 
constraints, which have a graphical appearance, to them. Then the user can test 
the object and its behavior in a separate view. In this view the objects can be 
exercised by moving and stretching them. This runs the constraint solver, and tests 
its ability to work in real time. Once a new object has been designed, it can be 
used as a component for another object. It may also be stored in a file for later use. 
A run-time library is available so that applications can use objects built with the 
editor. 

The editor is merely used to test ALIEN, to demonstrate its features, and to validate 
new ideas. As an interactive tool, it needs many improvements, in particular to 
represent the constraints graphically. Juno [Nelson, 1985] or Fabrik [Ingalls et at, 
1988] present significant work in this area. 

A Graphical Programming Environment for Occam 

To validate ALIEN from the applications point of view, we use it to develop a graph
ical environment for parallel programming with Occam: Epo++. This environment 
is based on the graphical visualization and editing of parallel programs. A program 
is represented by a control graph (see figure 10). Nodes ofthe graph represent var
ious components ofthe program: constructor processes like PAR, ALT, SEQ and so 
on, elementary processes like assignment, input, output, etc. 

This graph supports user interaction, enabling static analysis of the program. Con
structor nodes can be opened or closed, showing or hiding the code inside this 
node. A node can be displayed in another view, in order to focus on a subpart of 
the program. Communications are included in the graph and can be displayed by 
selecting either input or output processes. Finally, variables can be inspected, by 
opening a variable sub-window on any node that defines variables. At run time, the 
graph reflects the current state ofthe processes, showing active points (i.e. current 
instructions) and updating variables. 

The interface is connected to an Occam interpreter and scheduler. Our first im
plementation of this environment [Mourlin and Cournarie, 1989] led to numerous 
problems: layout of the graph, consistency between active points on the graph and 
the current instructions, consistency between variables and their graphical repre
sentation. The use of ALIEN has solved these problems. The layout is addressed by 
pure graphical constraints. For instance, each node is a fixed distance below its par
ent, and a parent node is centered over its sub graph. Generic templates are used to 
instantiate the arcs. Although in this case all nodes are made of the same graphical 
objects, changing the presentation of a node would not affect the constraints that 
tie the arcs to the nodes. 

Separating adjacent subgraphs by a fixed distance raises a difficulty as a node may 
be opened and replaced by a sub graph, thus changing the nodes that ,must be con
strained. To solve this problem, a subgraph has a virtual extent object, containing 
four slots. The right slot of the extent is constrained to be equal to the right slot 
of the rightmost node of the subgraph. Similar constraints are set with the other 
slots. Fixed size constraints are set between the slots ofthe extents of two adjacent 
subgraphs. When a subgraph is opened or closed, it needs only change the internal 
constraints of its extent. 
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1 CHAN OF INT Requast, Reply: 
21NT racalva: 
3 
4 PROC Sandar (CHAN OF INT Rl, R2) 
5 PAR 
6 Rl? racalva 
7 R2 I racalva 
8 : 
9 
10 PROC Racalvar (CHAN OF INT Rl, R2) 
11 PAR 
12 R1 I racaiva 
13 R2 ? racaiva 
14 : 
15 PAR 
16 VALINT Buffer.Slza I. 32: 
17 INT Any: 
18 [32JINT Buffer: 
19 ALT 
20 Reply? Buffer[topJ 
21 Sandar (Request, Reply) 
22 Request? Any 
23 Racaivar (Reply, Request) 
24 VAL INT Tamp IS 0: 
26 PAR 
27 Request I Any 
28 Reply? Tamp 

VIEW 0 

Figure 10: Epo++. "?" represents input, "!" represents output. The highlighted 
nodes (right son of ALT and left son of PAR) show an ongoing communication. 
Process Sender is closed in the main graphical view, and partially open in the 
subview VIEWO (the PAR construct is closed). The variables window has been 
opened on the first PAR construct. 
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With this example, we do not want to pretend that ALIEN is able to layout any graph. 
Here, we are concerned with directed acyclic graphs. To handle general graphs, one 
must provide a better solver than ours. Indeed, a solver based on local propagation 
can hardly address such problems. 

Epo++ manages the consistency between graphics and the Occam interpreter by 
semantic constraints. Constraints are placed between the Occam code in the inter
preter and the node representing this code in the control graph. An instruction has 
a boolean slot, connected by a constraint to the color slot of the node representing 
that instruction. When this instruction is executed, the interpreter sets the boolean 
to true, causing the node to be hilited. Breakpoints are handled similarly. Variables 
are stored directly in slots by the interpreter, so that variable windows are straight
forward to implement. Used that way, constraints give a behavior similar to active 
variables [Henry and Hudson, 1988]. 

8 Related Work 

In this section we compare ALIEN to a number of existing constraint-based sys
tems, especially those which are dedicated to graphics. ALIEN does not introduce 
any fundamental new idea in object-oriented programming or constraint systems. 
Rather it attempts an integration of known models, methods and techniques to 
make constraints really usable. The systems presented in this section have been, 
among others, the source of inspiration of ALIEN. 

ThingLab [Borning, 1981,Borning and Duisberg, 1986] is probably one of the best 
known systems that uses constraints. ThingLab has a graphical editor quite similar 
to ALIEN's to create constrained objects. The main difference between ALIEN and 
ThingLab is that ThingLab uses a class-based approach, namely the classes of its 
implementation language Smalltalk. Thus instantiating constrained objects leads 
to copying the constraints, whereas ALIEN uses sharing and delegation. Moreover, 
there is no other way to structure constraints than instantiation. Constraints in 
ThingLab are very general, like in ALIEN. However, ThingLab requires that each 
constraint provide the set of possible resolution methods, so that the solver knows 
which one to apply given a set of input and output variables. 

ThingLab introduced the notion of constraints hierarchy, and we have used this 
notion in ALIEN. Besides this, the solver of ThingLab is more powerful than ours, 
because it uses the sophisticated delta-blue algorithm for incremental insertion 
and removal of constraints. On the other hand, it is probably more difficult to 
change the solver in ThingLab than it is with ALIEN. The performance of ALIEN 
looks better than the performance of ThingLab, although this is very difficult to 
compare because of the difference of hardware and software environments. As an 
interpreted system, ThingLab actually looks very efficient. We have been concerned 
by the performance of ALIEN only recently, and we expect to be able to gain a lot in 
future versions, by tuning the implementation and by using other algorithms. 

Another constraint-based system for use with graphical applications is the Garnet 
set of tools [Myers et al., 1990]. The constraint system of Garnet is a new version 
of Coral [Szekely and Myers, 1988]. Garnet uses constraints in a rather pragmatic 
way. Constraints are unidirectional, so that there is no ordering of constraints to 
be done at resolution time. This gives very good performance (3500 constraints per 
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second) much better than other constraint systems. However, if we count only the 
playback time, then the performance of ALIEN does compare to the performance of 
Garnet. 

A powerful feature of Garnet is to provide lazy evaluation. This means that con
straint resolution only solves the variables that are of interest to the user. For 
instance, it is not necessary to compute the positions of objects that are not visi
ble. This however seems to be applicable only to unidirectional constraints, since 
with multi way constraints, one cannot foresee the contribution of a given con
straint to the value of a given variable. Lazy evaluation also raises the problem 
of which variables are "of interest". Although the constraint system itself does not 
use prototypes, other subsystems of Garnet do. The graphical object system defines 
aggregates, with propagation of changes to the instances. Unlike ALIEN, this is not 
based on delegation, but the comparison is difficult: constraints in Garnet are not 
objects but formulas, so that the notion of sharing constraints does not apply to 
Garnet. There is a further interesting similarity between ALIEN and Garnet: the 
Lapidary interface builder supports prototypes with parameters, which are instan
tiated by giving arguments. This is similar to ALIEN generic templates, except that 
it is available only at a higher level of the Garnet system, not at the very heart of 
the constraint system as with ALIEN. 

We have described ALIEN as the integration of constraints in a prototype-based 
model. Other integrations have been studied, namely the integration of constraints 
and logic programming and the integration of constraints and imperative program
ming. In CLP [Jaffar and Lassez, 1987], the integration of constraints with logic 
programming consists in replacing the concept of unification in a logic program by 
the concept of constraint solving. This is expected to be more general as well as 
more intuitive to use. Bertrand [LeIer, 1987] uses a similar approach and addresses 
constraint solving by augmented term rewriting. CLP has been used in building 
graphical user interfaces, as reported in [Ege, 1989], and Bertrand could be used 
for graphics as well. The integration we attempt with ALIEN is quite different to the 
integrations we just described. ALIEN tries to integrate constraints in a structured 
model, while CLP and Bertrand integrate constraint solving in a programming 
model. The focus is different, and the two approaches could actually be merged 
together. 

The integration of constraints and imperative programming is done in Kaleidoscope 
[Freeman-Benson, 1990]. This language makes it possible to state constraints as 
well as to assign expressions to variables and to use control structures like in 
imperative programming languages. This is achieved by introducing time as an 
explicit notion, and by associating a stream of values to each variable. We feel that 
ALIEN offers an integration that can be compared to Kaleidoscope although the 
means are different: Kaleidoscope is a language whereas ALIEN is a library. As a 
language, Kaleidoscope must address all the needs of the programmer; as a library, 
ALIEN relies on the client application and its supporting language. The ability to 
describe timed constraints (constraints that hold only for a given penod of time) 
is a powerful feature of Kaleidoscope that ALIEN misses. Conversely, genericity in 
ALIEN has no equivalent in Kaleidoscope, nor in any other constraint system we 
know of. 
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9 Conclusion and Future Work 

We have presented in this paper a new model that integrates constraints with 
prototypes. We have shown applications ofthe model and we have compared it with 
existing systems. Our goal is to make constraints usable in large-scale applications. 
This requires abstractions for the programmer without sacrificing efficiency at 
run-time. We believe that the abstractions defined with ALIEN are useful to the 
programmer, and that performance is acceptable, although more work is needed. 
Our first experiments show that programming with constrained objects is much 
easier than programming with constraints and objects. Wiring together slots and 
objects and constraints by hand is much more difficult and error-prone than using 
predefined components and tuning them to one's specific needs. We could compare 
this to programming with an assembly language versus programming with a high
level language. Genericity supports the idea of constrained objects very efficiently. 
One can imagine libraries of generic templates to choose from when creating an 
application. 

Work on ALIEN is continuing. The model is now stable enough to undertake the task 
of specifying its semantics. We feel this is a major step to the real understanding 
of structuring constraints. Iterative constraints need to be investigated further as 
they are only experimental at this moment. We also want to study the applications 
of constraints to the description of the dialogue of user interfaces: we have shown 
how ALIEN can describe the graphical behavior of objects, but we would also want to 
describe how the user can create, delete and manipulate these objects. The editor 
already restricts the editable parts of the objects based on the visibility of slots, 
but this is far from sufficient. We beleive that the general paradigm of constraints 
applies to such specification of interactive objects. 
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Extending an Advanced Logic 

Programming Environment by an 

Object-Oriented User Interface 

Management System 

Heinrich Jasper 

Visualization and manipulation of knowledge is of great importance for any knowledge based 
system. Window based user interface management systems (UIMS) allow building flexible and 
easy to use interactive graphical user interfaces. There is a need to integrate such UIMS into 
knowledge base programming environments. This paper addresses the integration of UIMS 
into the logic programming environment PROTOS-L. Our approach provides a small set of 
built-in predicates that defines an easy to use object-oriented interface to UIMS within the 
logic programming language. This interface is realized by the PROTOS-L window manager 
and presented by a simple text editor in this paper. Its implementation is based on a multiple 
process concept with asynchronous communication in order to cope with long lasting inference 
processes. The prototype of the PROTOS-L window manager is implemented on top of the 
standard user interface toolkit OSF/Motif. 

The work reported here was carried out within the EUREKA project PROTOS (EU 56) when 
visiting the Institute for Knowledge Based Systems of IBM Germany Scientific Center. 

1 Introduction 

Within the international EUREKA project PROTOS [Appelrath, 1987] tools for 
building expert systems based on the logic programming principle are designed 
and implemented. One such tool is the PROTOS-L system [Beierle and Bottcher, 
1989], a compiler based logic programming environment. The PROTOS-L language 
is designed to support software engineering principles like strong typing and modu
larization. Furthermore, the PROTOS-L system provides advanced tools for build
ing expert systems like a deductive relational database and a high level interface 
to user interface management systems (UIMS). 
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Applications that provide interactive graphical user interfaces create, manipulate 
and destroy visual objects dynamically. This behaviour is most naturally imple
mented using an object-oriented programming approach. Such object-oriented in
terfaces to UIMS offer classes of which applications can create instances. 

A class defines a set of attributes and methods. Attributes are specified by name, 
value class and default value. Methods have a name unique within the class and 
are invoked by messages. For example, messages can be used to manipulate the 
attribute values of instances or to send messages to other instances. Classes are 
organized in a hierarchy and provide an inheritance mechanism. This means that 
a class knows about the attributes and methods of all its ancestors in the class 
hierarchy. 

An instance of a class, usually called object, is created by sending a method to the 
desired class. The object itselfis manipulated by sending messages to it. Attributes 
and methods defined by a class or inherited from ancestor classes are known to 
all objects of that class. Within an application, the objects may be organized in 
a hierarchy, too. This allows for inheriting attribute values from ancestor objects. 
Thus it is easy to manipulate an attribute value of a set of objects: just redefine the 
value in an ancestor object and all heirs will get the new value. The instances of 
the classes of a user interface management system (usually called widgets, i.e. an 
abbreviation of window gadgets) can be visualized on displays, e.g. as windows or 
graphical objects, and allow for direct manipulation. 

The communication between application and UIMS is done by message passing in 
object-oriented environments. These messages are created by events due to user 
interaction. Methods are either defined by the UIMS or by the application. The 
application provides methods to handle those user events (for example pushing 
a button created by the application) that are specific to the application. These 
methods are installed into appropriate predefined slots of an object. They are called 
callbacks. Within the PROTOS-L system callback procedures are implemented as 
deterministic relations, i.e. relations that consit of exactly one "solution". 

Whenever some event occurs in the UIMS (e.g. as the result of a user action) it 
invokes the corresponding callback. This event handling is done by a predefined 
method of the UIMS, called the "event handling loop". This method receives all 
events and distributes them to methods either installed by applications or defined 
in the UIMS. 

The architecture of the PROTOS-L window manager (hereafter called PWM) con
sists of four major parts: the class manager (PCM), the object manager (POM), 
the PROTOS-L windows interface (PWI) and the PROTOS-L callback manager 
(PCBM). The class manager provides all classes known to the UIMS and organizes 
them in a hierarchy. The object manager manages the set of actually known objects. 
These are those objects created by PROTOS-L applications and additionally some 
predefined objects having unique names (cf. section 4). The PWI provides a set of 
built-in predicates (built-in predicates define a library in logic programming lan
guages) to the PROTOS-L programmer that allows for creating and manipulating 
objects. The callback manager invokes the PROTOS-L procedures that correspond 
to events that occured in the window system. 

The global architecture regarding message passing between PROTOS-L, PWM and 
UIMS is visualized in figure 1. The PROTOS-L system communicates with the 
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Figure 1 : PROTOS-L window manager (PWM) architecture 

PCM, POM or PCBM via a set of built-in predicates (cf. section 2). The PCM/POMI 
PCBM in turn communicate with the UIMS via library calls (cf. section 3 and 4). 
Of course, both communication channels are bidirectional. 

The next section explains the built-in predicates that the PWM provides to appli
cation programmers. This is followed by a section presenting an example editor 
implemented with these predicates. In the fourth section the concepts ofthe imple
mentation of the PCM and POM on top of OSFfMotif are outlined. A summary is 
given in the last section. 

2 PWI: The Programmer's Interface 

The overall design goal of the PROTOS-L programmer's interface, the PWI, was 
to provide a set of built-in predicates in the PROTOS-L language that is as small 
as possible. Thus it is not feasible to set up a one-to-one mapping between meth
ods of classes and built-in predicates, since this would result in a huge amount of 
built-in predicates (cf. the approaches described in [BIM, 1988], [Quintus, 1990] 
and [IFIProlog, 1990]). Furthermore, such a one-to-one mapping is not easily man
ageable because it is inflexible regarding changes and enhancements to the PWM: 
adding a new class or changing the arguments of a method requires changes to the 
built-in predicates. 

Therefore, the built-in predicates provided by the PWI are defined as an abstraction 
of methods, called generic methods. All methods of the classes are mapped to these 
generic methods. Four generic methods were identified in the object-oriented UIMS. 
These generic methods allow: 

• creating a new object, 

• assigning values to attributes of one object, 

• asking for one object or for the values of the attributes of some object and 

• calling a method of an object. 
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For each generic method there exists one built-in predicate in the PWI. These 
built-in predicates can be detailed as follows: 

1. pwm.-D.ew(class..name, attribute_value3ist, object) 

The built-in predicate pwm-Ilew creates a new object as an instance of an 
existing class. The class itself is denoted by its name which is represented as 
a string in the first argument ofpwm-Ilew. The second argument ofpwm-Ilew 
specifies a list of attribute-value-pairs. These define those attributes of the 
new object that will initially differ from the defaults provided in the class 
description. The third argument returns the object identifier. 

Due to the strong typing principle of PROTOS-L, the elements of the at
tribute_ value Jist must have a value of one offour different PROTOS-L types. 
These are integer (Lattr), string (s_attr), pwm_object (o_attr) and pwm_goal 
(p-littr), the latter two being abstract types in the PWI. Each attribute-value
pair is denoted as a term with functor Lattr, s_attr, o_attr or p_attr respectively, 
the first argument of which is the attribute name (a string) and the second 
argument is the respective value. 

Values of type pwm_object are object identifiers known to the POM. A pwm_goal 
is a callback, providing application dependent actions for events occurring in 
the user interface. A pwm_goal is defined as an ordinary subgoal in the body 
ofPROTOS-L rules. As soon as a corresponding event occurs the goal is called 
as the actual goal inPROTOS-L. The proof of this goal can in turn cause other 
events and thus other goals to be called. 

For example a call of 

(Gl) pwm..new("XmText", LattrC"width", 500). Lattr("height", 400). nil, Text) 

creates a new object of the class XmText having values 500 for the width 
attribute and 400 for the height attribute. (In PROTOS-L lists are written 
with an infix dot operator separating head and tail. They are finished with 
the predefined term "nil".) An abstract handle for this object is unified with 
the PROTOS-L variable "Text" (which of course must be of the corresponding 
type pwm_object). 

2. pwm.--Bend(object, attribute_ value3ist) 

This built-in predicate updates values of attributes of a given object. The 
attribute Jist is defined as above. 

For example a call of 

(G2) pwm_send(Text, s_attr("text", "This is a text.") . nil) 

assigns the string "This is a text." as actual value of the text attribute of the 
object unified with the "Text" variable, cf example (Gl). 

3. pwm._get(object, attribute_value3ist) 

This predicates asks for actual values of an object and unifies them with the 
variables in the attribute_value Jist. The retrieved values may differ from 
the last assignment done by a call to pwm..new or pwm_send as a result of 
interactive changes (mostly due to user interaction) of the state ofthe windows 
and their contents on the screen. 



www.manaraa.com

7. Extending an Advanced Logic Programming Environment by an OOUIMS 117 

For example calling 

(G3) pwm_get(Text, i..attr("width", W) . s_attr("text", T) . nil) 

will result in retrieving the values of width and text of the object denoted by 
the "Text" variable and unifying them with the variables Wand T respectively. 
Of course, the types have to be correct: in this case W must be of type integer 
and T of type string. The values ofW and T may differ from the initial settings, 
e.g. W may be unequal to 500 (cf. (G1» as a result of window resizing and T 
may "contain" an arbitrary string as a result of user updates on the initially 
assigned and displayed text (cf. (G2». 

This built-in predicate may be used to query the object identifier of some 
(predefined) object, too. For example a call to 

(G3') pwm_get(Multi-.line, s_attr("name", "MULTLLINE..EDIT").nil) 

retrieves the object named "MULTLLINE..EDIT" and unifies its object iden
tifier with MultiJine. 

4. pwm_ca1l(object, method, attribute_value Jist) 

This built-in predicate is used to call methods of objects. The first argument of 
pwm_call references the object and the second argument denotes the method 
via a string. The third argument is a list of attribute-value-pairs that is 
mapped to the parameters of the method. Since the parameters in this list 
are named no ordering ofthe elements of the attribute-yalue..list according to 
the ordering ofthe parameters ofthe method is necessary. 

For example 

(G4) pwm_call(Text, "destroy", nil) 

calls the destroy-method known by all objects. This method has no arguments, 
thus the attribute_value list is empty (equal to nil). In this case it will destroy 
the object referenced by the "Text" variable, e.g. as created in goal (G 1). 

The four predicates described above allow for creating and manipulating arbitrary 
objects as instances of the classes known to the PCM. In order to call the "event 
handling loop" there exists a fifth built-in predicate, namely pwm_start(display· 
parameters). The argument ofpwm.J>tart is system dependent (e.g. for specifying 
the display to be used) and is normally left empty. In the following section an 
example shows how these predicates are used to create a simple interactive window 
based editor. 

3 Example: an Editor 

The following example is part of an application that demonstrates the development 
of a window based user interface in PROTOS-L. This example uses, among others, 
the text class ofOSFlMotifin order to implement an editor that manipulates files. 
The application is called "xmeditor" and e.g. documented in [OSF1, 1990]. A descrip
tion of the text class itself can be found in [OSF2, 1990]. The reimplementation of 
a smaller part of the "xmeditor" in PROTOS-L using the PWI built-in predicates is 
described in this section. The editor consists of the parts depicted in figure 2. 
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-I editor 1'10 
~ 

I Open an example text in a text widget window. It can 
Save ~d by using the mouse and combinations on mouse 
~ for cutting and pasting. 
~ 

Figure 2: The example editor 

The steps to develop a window based application are sequenced in the usual way: 
first define all the necessary objects and then implement the appropriate proce
dures and assign them as callbacks. After this call the "event handling loop" via 
pwm_start. The built-in predicate pwm_start is normally the last goal that is acti
vated in a PROTOS-L application using windows. 

In the "xmeditor" example an application shell, a text window and a menubar are 
created. Having finished this, the event loop ofthe window system is started. This 
is denoted by the following initial PROTOS-L rule (specified as a deterministic 
relation with keyword drel) that defines a predicate "editor" of arity 1. Calling this 
procedure starts the "xmeditor" application. The argument of the editor predicate 
is the name of the file to be initially edited. 

drel editor: string. 
editor (File) <- create_shell (Shell) & 

create_text (File, Shell, Text) & 
create_menubar(Shell, Text) & 
pwm_start("") . 

An application shell is the basic window for applications written on top ofOSFlMoti£ 
It is the root object in the object hierarchy of applications using windows. The ap
plication shell is created by the deterministic relation create_shell that is defined 
by the following PROTOS-L rule; attribute values are defined as in [OSF2, 1990]: 

drel create_shell : ?pwm_object. 
create_shell (Shell) <- pwm_new( "ApplicationShell" , 

s_attr ("name", "editor"). 
i_attr ( "shadowThickness" , 0). 
s_attr("managed", "true") .nil, 
Shell) . 

The text window is create via the next PROTOS-L rule. First the identifier of 
a predefined object named "MULTLLINE...EDIT" is retrieved. After this the text 
window is created and the deterministic relation openfile (see below) is called, 
which assigns the contents of a file to the text window. 
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drel create_text : string x pwm_object x ?pwm_object. 
create_text(F, S, T) <-

pwm_get (Multi_line, s_attr ("name", "MULTI_LINE_EDIT") .nil) & 

pwm_new ( "Text" , 
o_attr ("parent", S). 
i_attr("rows", 60). 
i_attr("columns", 120). 
s_at tr ( "res i zeWidth", "true"). 
s_attr (" resizeHeight", "true"). 
s_attr (" scrollVertical", "true"). 
s_attr (" scrollHorizontal", "true"). 
o_attr ("editMode", Multi_line). 
s_at tr ( "wordWrap", "true"). nil, 
T) & 

openfile (F, T). 

The menubar is created via the deterministic relation createJllenubar. It consists 
of one button for calling a pulldown menu. The pulldown menu itself consists of 
three buttons, that allow for opening and closing a file and for saving the actual 
text displayed in the text window. 

drel create_menubar : pwm_object x pwm_object. 
create_menubar(S, T) <-

pwm_new("MenuBar", o_attr("parent", S).nil, MBar) & 

pwm_new("PulldownMenu", o_attr("parent", MBar). nil, PDMenu) & 

pwm_new( "CascadeButton", 
o_attr("parent", MBar). 
o_attr (" subMenuld", PDMenu). 
s_attr ("labelString", "File"). 
s_attr (limnemonic li I IIFII). 

s_attr ("managed", "true") .nil, 
) & 

pwm_new( "FileSelectionDialog", 
o_attr ("parent", PDMenu). 
p_attr ("okCallback", open (_, _, T)). 
p_attr ("cancelCallback", cancel (_) ) .nil, 
Open) & 

pwm_new ( "PushBut ton" , 
o_attr ("parent", PD_Menu). 
s_attr( "labelString", "Open"). 
s_attr ("mnemonic", "0"). 

s_attr ("managed", "true"). 
p_attr ("acti vateCallback", openj1enu (_, _, Open)) . nil , 
-) & 

pwm_new( "PushButton", 
o_attr ("parent", PD_Menu). 
s_attr ("XmNlabelString", "Save"). 
s_at tr ( "XmNmnemonic", "S"). 
s_attr ("managed", "true"). 
p_attr("XmNactivateCallback", save(_, _, T)) .nil, 
-) & 

pwm_new( "PushButton", 
o_attr ("parent", PD_Menu). 
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s_attr ("XmNlabelString", "Close"). 
s_attr ("XmNmnemonic", "C"). 
s_attr("managed", "true"}. 
p_attr("XmNactivateCallback", close(_, _, T, S}}.nil, 
-} . 

Within a call of the procedure createJIlenubar seven objects are created. These 
are the menubar as a child of the application shell widget, the pull down menu, 
a cascade button (called "File") as a child of the menubar that is connected to 
the pulldown menu, the three buttons mentioned above and a file selection dialog 
widget, which is visualized when the activate callback of the open button is invoked, 
cf. the deterministic relation "open..Menu" below. 

The procedure openfile which is called as the last subgoal in create_text opens a file 
(stream), reads the stream as a string (cf. second argument) from that file, closes 
the file and assigns the string as well as the filename to the text object. It is defined 
as follows: 

drel openfile : string x pWffi_object. 
openfile(Filename, Text} <

open_instream(Filename, string, Stream} & 
get_term (Stream, String} & 
close_instream(Stream} & 
pWffi_send(Text, s_attr("filename", Filename}. 

s_attr ("value", String). nil} 

The deterministic relations (procedures) installed as callbacks of the buttons are 
defined below. They consist of 

• an open procedure that assigns a new file and string to the text object and 
unmanages the file-selection-dialog object, 

• a cancel procedure the unmanages the file-selection-dialog object, 

• a open..Menu procedure that manages the file-selection-dialog object, 

• a save procedure that writes the actually displayed string into the correspond
ingfile and 

• a close procedure that works in the same way as the save procedure but 
additionally calls the destroy method of the top object of the application and 
therefore destroys all objects. 

Callbacks may have arbitrary arity but the first two arguments must have type 
pwm_object each, if they exist. The first argument will be instantiated with the 
object identifier of the object to which the event belongs that invoked the callback. 
The second argument is instantiated with an object that describes the event which 
caused the callback to be invoked. 

drel open: pWffi_object x pWffi_object x pWffi_object. 
open(W, Data, Text} <-

pWffi_get(Data, s_attr("filename", Filename} .nil} & 
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openfile(Filename, Text) & 
pWffi_get(W, o_attr("parent", Parent).nil) & 

pWffi_send(Parent, s_attr("managed" , "false"). 

drel cancel : pWffi_object. 
cancel (Widget) <- pWffi_get(Widget, o_attr("parent", Parent).nil) & 

pWffi_send (parent, s_attr ("managed", "false"). 

drel open_Menu : pWffi_object x pWffi_object x pWffi_object. 
open_Menu(_, _, Menu) <-

pWffi_send(Menu, s_attr("managed", "true") .nil). 

drel save: pWffi_object x pWffi_object x pWffi_object. 
save(_, _, Text) <- pWffi_get(Text, s_attr("filename", Filename). 

s_attr("value", String).nil) & 

open_outstream(Filename, string, Stream) & 
put_term (Stream, String) & 
close_outstream(Stream) . 

drel close: pWffi_object x pWffi_object x pWffi_object x pWffi_object. 
close(_, _, Text, Shell) <- save(_, _, Text) & 

pWffi_call(Shell, "destroy", nil). 

The example given here is only a smaller part of the "xmeditor" application which 
originally provides two pulldown menus, one for file handling (open, close, save, 
save-as, new) and the other for editing (cut, copy, paste and clear). The code used 
in PROTOS-L for the complete "xmeditor" example is only about 30 percent ofthe 
original example which is written in C and covers 25 pages of source code. 

To our opinion, this example demonstrates how easily complex user interfaces 
are implemented using the PWI (and OSFlMotif). Furthermore, it is well known 
that the logic programming paradigm allows for rapid prototyping and flexible 
application development. Therefore, PROTOS-L together with the PWM will allow 
for incrementally building advanced knowledge based system like those production 
planning systems (job shop scheduling) that are the subject of the PROTOS project. 

4 Implementation on Top of OSF/Motif 

A PROTOS-L application using the PWI results in the software architecture de
picted in figure 3. Only those parts of an application regarding user interface man
agement are visualized. The bottom software layer (e.g. hiding operating system 
peculiarities) is the X library of the X window system. Upon this the Xt intrinsics 
library is provided which allows for building widget class hierarchies. Using these 
intrinsics (and some features of the X library as well) the OSFlMotiflibrary builds 
its widget and gadget classes. . 

The next layer is provided by the class and object manager of the PWM. These 
managers are based on the OSFlMotif class hierarchy. Additionally, these managers 
need some procedures provided by the Xt intrinsics and the X libraries. This layer 
provides the PWI to the PROTOS-L applications. An advantage of the approach of 
the PROTOS-L window manager is that it prevents the programmer from details 
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PROTOSoL application 

PWI 

I OSFlMotif 

I Xt intrinsics 

X library 

Figure 3: Software architecture of applications using PWM. 

regarding different libraries, unlike the OSFlMotiflibrary where every application 
additionally uses procedures from the Xt intrinsics and the X library. 

The architecture ofthe implementation ofthe PROTOSoL window manager (PWM) 
is given in figure 4. It consists of three major layers: the PROTOSoL inference 
system, the PROTOSoL window manager itself and the X window system. The 
PROTOSoL inference system consists ofthe inference engine and a module for the 
windows interface, realizing interprocess communication (IPC) to the PWM. 

The architecture of the PWM consists of six modules, one for the PWM part of the 
IPC to the inference engine that realizes the built-in predicates of the PWI, one 
for initializing the PWM, i.e. the class (PCM), object (POM) and callback (PCBM) 
managers, one for the isolation ofthe X interface and the three major parts, namely 
PCM, POM and PCBM. The PCM and the POM are discussed in detail below. 

All classes known at the PWI are managed by the PROTOS-L class manager (PCM). 
Class descriptions are maintained on a secondary device which is a file in our 
prototype. Running a PROTOS-L application, the class descriptions are loaded from 
this file and an internal tree representation of the class hierarchy is constructed 
before the first built-in predicate of the PWI is executed. Each node in this tree 
structure represents one class. It holds information about all attributes of that 
class, their respective value class and default value (which is NULL, if unknown). 
Furthermore, it preserves information about all methods known to a class. 

The classes known to the PCM are mapped to corresponding features ofOSFlMoti£ 
OSFlMotifis an object-oriented UIMS (at least to a certain extent) providing widget 
classes (e.g. objects/tools having an associated window) and gadget classes (window
less tools/objects). It is based on the X window system ([Scheifler et.al., 1988]) and 
implemented as a widget set on top ofthe Xt intrinsics ([Young, 1989]). OSFlMotif 
as well as the X window system are implemented in C (basically on UNIX worksta
tions). Unfortunately, OSFlMotifis not object-oriented in every detail. For example 
the methods known to the objects of one class are ordinary C procedures that are 
not directly linked to that class as methods. 

Therefore, it is not possible to maintain a one-to-one mapping between classes and 
their features in the PCM and the corresponding classes and features ofOSFlMoti£ 
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Figure 4: The PWM process and module architecture (arrows indicate the flow of 
messages) 
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Instead, the PCM provides an object-oriented abstraction of non object-oriented fea
tures of OSF 1M0tif. These are mappings of attributes and methods to C functions of 
the Xt intrinsics and X window system libraries. Additionally, in order to provide a 
truly object-oriented interface in the PWI it is necessary to maintain classes in the 
PCM that have no corresponding class in the UIMS. Especially, there exist integer 
and string classes in the PCM which have no counterpart in OSFlMotif. 

All objects created in a PROTOS-L session via the PWI built-in predicates are 
managed in the PROTOS-L object manager. Whenever a new object is created, its 
consistency is checked against the PCM class descriptions. The objects are orga
nized in a hierarchy. This hierarchy is maintained as a tree in the POM. Each 
object holds a reference to the class of which it is an instance. This reference is 
used when manipulating an object in order to check the changes against the class 
descriptions. Predefined objects must be maintained in the POM. For example in 
the OSFlMotiflibrary there exist enumeration types (in the C language) that are 
used to describe predefined features of classes and instances, see e.g. the object 
named ''MULTLLINE-EDIT'' in the example given in the previous section. Each 
predefined object has an unique name in the POM. They are maintained in an 
object file of the PWM and loaded into the POM immediately after the classes are 
loaded. 

The PROTOS-L inference system, the PROTOS-L window manager and the X 
window system with OSFlMotif run in seperate processes. Typically, the UIMS 
runs a process of its own just because it has to cope with other applications. The 
PROTOS-L inference system and the PROTOS-L window manager run in distinct 
processes in order to cope with user interaction while running long lasting inference 
processes in PROTOS-L. Otherwise the following two problems will occur: 

• User interaction is suspended as long as a callback lasts. This is not feasible 
in knowledge based applications, since a callback might start an inference 
process that lasts for several minutes or even longer . 

• All intermediate results are displayed when a callback is finished. This may 
result in a lot of changes to the visualized objects at some moment. But, the 
inference process normally generates intermediate results in some sequence 
the user wants to watch and react on. 

In order to circumvent the, problems mentioned above the PROTOS-L inference 
system and the PROTOS-L window manager run in two asynchronous processes. 
They communicate via message passing. Each call of a built-in predicate of the 
PWI results in both, sending a corresponding message to the POM which in turn 
notifies the X window system. The PCBM sends messages to PROTOS-L in order to 
invoke callback procedures. These callback procedures are managed by PROTOS-L 
normally one after the other. In order to cope with long lasting processes, callbacks 
can be specified to interrupt the actual inference process. This results in storing 
the actual state of the inference process and the processing the interrupting call
back. As soon as the latter has finished, the former inference process is resumed. 
Intermediate results of PROTOS-L inference processes are visualized as soon as 
they have been established. 
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5 Summary 

The PROTOS-L window system offers a high level interface for programming win
dow based user interfaces. Objects of an object-oriented UIMS are created and 
manipulated using four generic methods. An implementation on top of OSFlMotif 
provides all classes of OSFlMotif to the PROTOS-L programmer. In opposite to 
other approaches (see e.g. [IFIProlog, 1990] and [Quintus, 1990], where one-to-one 
mappings between OSFlMotifprocedures and built-in predicates are provided) the 
PWM establishes a flexible integration ofUIMS. Especially, other widget sets (e.g. 
the Athena or HP widget sets) may be installed instead of or in addition to the 
OSFlMotif widget set. This will not change the interface but allows for using the 
same built-in predicates to access the new classes and objects. 

There exist several approaches to integrate graphical and user interface capabili
ties into e.g. Prolog programming environments. Most of these use a set of built-in 
predicates that map the functions of the UIMS one-to-one to Prolog, see for example 
[BIM, 1988], [lFlProlog, 1990] and [Quintus, 1990]. The approach of the ProWin
dows system of [Quintus, 1988] is similar to the approach adopted here since it 
uses generic methods, too. But the "event handling loop" must be implemented by 
the Prolog programmer in the ProWindows system. Thus, all approaches known to 
us lack the simplicity of the message passing approach adopted for the PROTOS-L 
window manager. 

The approach described here has been implemented on RS/6000 workstations un
der AIX 3.0. It has been tested by two complex knowledge based applications, a 
system for interactively planning of train connections and an application in the 
area of job shop scheduling. Experiences with the latter showed the necessity of the 
multiple process architecture, since the planning algorithm lasted for more than 
fifteen minutes and the planning staff did not accept this time period where it could 
not interact with the planning system. Therefor, the planning stuff was allowed to 
interrupt the actual planning process and to ask for information about the jobs 
planned so far. This behaviour could easily be implemented with the asynchronous 
process mechanism of the PROTOS-L window manager. 
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Appendix: PWM programmer's interface: built-in predicates (PWI) 

pwm_object abstract. 

pwm-9oal .- % call of a deterministic PROTOS-L relation (e.g. p_rel) having 
% arbitrary arity. If p_rel has arity > 0, the first argument 
% must have type pwm_object (will be instantiated with a widget 

identifier). If p_rel has arity > 1, the second argument must 
have type pwm_object (for callback data), too. The other 
arguments must be ground when installing an object of type 

% pwm-90al as callback to some object. This type must not be 
% used in PROTOS-L programms, i.e. a callback must not be 
% instantiated to a variable. 

pwm_attribute .- (i_attr: string x int, 
o_attr: string x pwm_object, 
p_attr: string x pwm-9oal, 
s_attr: string x string). 

% named integer attribute 
% named pwm_object attribute 

named callback attribute 
% named string attribute 

string x list(pwm_attribute) x ?pwm_object. 

pwm_object x list (pwm_attribute) . 

?pwm_object x ?list(pwm_attribute). 
In general undetermined deterministic behaviour, if the 

% first argument is not instantiated. This case is useful 
% for retrieving identifiers of predefined named objects. 

string. 
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An Object-Oriented Architecture for 
Direct Manipulation Based Interactive 
Graphic Applications: The MAGOO 
Arch itecture 

Mario Rui Gomes, Rui Pedro Casteleiro, and Fernando Vasconcelos 

Magoo is a C++ implementation of OO-AGES, an object-oriented model that copes with the 
requirements of Direct Manipulation based Interactive Graphic Applications both at the user 
interface and at the semantics level. The OO-AGES is based on the Client-Server concept and 
the Responsibility-Driven approach. 

An overview of the OO-AGES model is given and the main Magoo classes are described. The 
current Magoo version includes a object-oriented encapsulation of both X-Window and Motif 
Xtoolkit that will be described. A graphic editor is used to exemplify Magoo's architecture. 

1 Introduction 

Traditionally an Interactive Graphic Application is divided in an user interface 
and a semantics part [Pfaff, 1985]. The specification and implementation of each 
part is usually different although both pose common requirements including so
phisticated graphics, commands given at any time, different ways to give the same 
command, multiple input and output devices, complex dialogues, fast and continu
ous prompt/feedback and non static interfaces. 

The OO-AGES [Gomes and Fernandes, 1991] is an integrated client/server based 
model where no distinction between semantics and user interface objects exists. 
The Model follows the responsibility-driven approach [Brock, 1989]; where each 
object is responsible to perform a task and to collaborate with other objects. 

The Magoo architecture [Gomes et al., 1990] is an implementation of the OO-AGES 
model, written in C++ and using X-Window and Motif XToolkit. For each main 
OO-AGES concept an abstract class was written and will be described. Magoo will 
be used in the ESPRIT HYPERFACE project (ESPRIT 5391). 
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2 Overview 

The OO-AGES solves the biggest problems found in creating an application based 
on direct manipulation techniques: the manipulation of virtual world objects. Ide
ally an human operator should be able to directly manipulate any virtual world 
object including buttons, keys, dials, furniture, clothing, the same way he does 
with the real world objects. Unfortunately the most popular physical devices are 
only suitable to handle very simple objects. The operator visualises images (raster 
graphics) and manipulates keyboards (ASCII values) and mouses (location value). 
To solve the problem it is necessary to transform low level abstractions, at the 
sensorimotor level, in high level abstractions, at the application object's level. Any 
input data should be used to manipulate a virtual world object, the image (low level 
re presentation) of any virtual world object should also be visualised. To model a 
Interactive Graphic System is to define the virtual world objects and the transfor
mations needed to visualise and manipulate them. In the OO-AGES model there 
are two main objects: the Data objects and the Transformer objects. 

Data objects are divided in two main families. Some contains information about 
virtual world objects. Others represent the information used at the man-machine 
interface. A display object is a low level data object where output is shown and input 
is received. Any graphic system can be used to receive and display information. The 
current Magoo implementation includes an encapsulation of X-Window and Motif 
Xtoolkit. 

The transformers are usually organised in a pipeline. They are also divided in 
two main classes. Each object of an output pipeline, a driver, is responsible for 
the creation of a data object image. The inverse transformation is performed by 
an input pipeline, where each object is called a dialog. An output pipeline has the 
responsibility of transforming the data objects running through the several pipeline 
stages until an image is created. An input pipeline is responsible for managing 
(creating, editing and destroying) objects. In Magoo the first input pipeline stage is 
a generic event handler that can subscribe several basic event types, for instance, 
a button down. 

r---------~----_1--( Mouse ) 
Dialog 

Panel 
Object 

(Transformers) 

Driver 

Figure 1: An application model 

Window 

Display 
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In Figure 1 the mouse and keyboard are used to direct manipulate a panel object. 
The dialog is responsible for the mapping between physical devices manipulation 
and panel manipulation. The driver is responsible for the creation of the panel's 
image. The communication between objects can be synchronous or asynchronous. In 
the Magoo implementation only synchronous communication is used. In summary, 
an application is a set oflinked objects managing virtual world entities (the panel 
object). The main programmer's responsibility is to create dialog objects that deal 
with an application's dynamic. 

3 Magoo Classes 

In Magoo each 00-AGES main concept is implemented by a C++ abstract class. 
There are two main Data classes and two main Transformer classes. The most 
important ones will be introduced and described. 

3.1 Graphic Objects 

The managing of virtual world objects is the main goal of a Direct Manipulation 
based Interactive Graphic Application. With these applications it is possible to 
create, destroy and modify virtual world objects including their geometry and at
tributes (colour, physical attributes, .. ). 

Many direct manipulation based applications were implemented on top of graphic 
systems, including GKS [ISO, 1985], PRIGS [ISO, 1988] and X-Window [Scheifler 
and Gettys, 1986], which were used to create graphic object images. But the main 
problem is not to visualise a virtual world objects but to manipulate it. Unfor
tunately no support is given, by those graphic systems, to modify an object, for 
instance to insert or delete a point in a polyline or to change a circle's radius. 

In Magoo any data object can be created, destroyed or modified. The creation of 
an object's image is a driver's responsibility and the managing of any object is a 
dialog's responsibility. In Magoo there are graphic objects, GO, composed of a set 
of components (other data objects) and a set of methods to define and inquire the 
value of each component. Each GO is defined in its own coordinates space and 
composed of a geometric part and an attribute part. The geometric part includes all 
the components necessary to define a specific GO class. Polylines, Polygons, Splines, 
Circles, Arcs and Rectangles are available and a transformation matrix is used to 
define the object's coordinate space. 

Attributes are used to define a GO's appearance. Font, DrawMode, Pattern, Line
Width, LineStyle, Visibility, Detectability, Foreground (Colour), Background (Colour) 
are available and grouped in a Graphic Context. It is possible to change a GO ge
ometry and to rotate, shift and scale it. Several methods for points editing are 
available as well as specific GO dependent methods. For example it will be possible 
to inquire and define the radius, the centre coordinates, the starting angle and the 
ending angle of a arc. 

Most of a virtual world entities are complex objects. Magoo copes with this require
ment with the introduction of the Composite Graphic Object, CGO, concept. Those 
objects are composed by an editable set of GO, a transformation matrix and at
tributes. A GO's coordinate space is defined in its father coordinate space. If a GO 
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has not all the graphic attributes, the missing information will be inherited from 
its father. Methods to inquire and define a GO's father are also available. 

Composite 

Inesc 
Logo 

MGC 

Figure 2: A tree of Graphic Objects and attributes 

Color 
Green 

Width 2 

Reference .. 

Figure 2 shows a composite graphic object, the "Inesc Logo" composed by a set of 
spline graphic objects. Two attributes were created, the foreground object "Colour 
Green" and the line width object "Width 2". They are grouped together in the graphic 
context object ''MGC''. 

4 Magoo Display Objects 

After the definition of virtual world objects it is necessary to define the sensorimotor 
interface that will be used. Any graphic system can be used to create images and to 
receive input data objects. In current Magoo's implementation a C++ MotifXToolkit 
encapsulation is available. There is a 1:1 relation between a Magoo display and a 
widget. 

A homogeneous interface with the MotifXToolkit is implemented by the MXtDis
play class enabling the use of any widget's window to create an virtual world 
object's image. Displays are organised in trees and it is possible to change and 
inquire the relations between displays or to define and inquire any attribute value 
(widget resource). 

In Figure 3 a tree of displays was created. The image of a virtual world graphic 
object can be created inside one or more displays. 

5 Driver Objects 

Both the virtual world and sensorimotor objects were already described. It is time 
to introduce the Transformer objects. To compute a low level representations of 
a GO, one or more Drivers must be created and linked with a display. To create 
an image inside a window a specialised driver, the MXtDriver must be used and 
linked with a MXtDisplay object. 

Any driver manages a display list. The relative position of two GO's in a display 
list will define the sequence of the lower level GO creation. Methods to insert, in-
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Figure 3: A simplified example of a display tree 

sert before, insert after, update, remove or inquire a display list are available. A 
message must be sent to the driver if an update of the lower level GO representa
tion is explicitly needed, for example its new image (graphic representation). If a 
graphic object is defined active, the drivers will be informed whenever the object 
is modified. Any driver can use its display list to automatically repair the contents 
of a window it is connected with. Thus, the lowest level objects are transparent to 
the application's programmer. Within Magoo it is possible to use pre-programmed 
interaction techniques, the XToolkit widgets, extending their graphic capabilities 
without any special knowledge. 

Driver 1 A-App 

Inesc logo Driver 2 C-App 

Links .. Driver 3 D-Window 

Figure 4: One Composite Graphic Object with 3 images 

Figure 4 show the necessary links to obtain three different images of,a Composite 
Graphic Object, the "Inesc Logo". The three images are computed by three drivers 
(MXtDriver) in three displays. Any "Inesc Logo" modification will be visible inside 
the three windows. 
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6 Dialog Objects 

Until now it was possible to create GOs, to display them in several displays and to 
modify them. Any modification of a GO will automatically impose the modification 
of all its images. But most of Magoo applications are interactive and, by definition, 
the human operator will be responsible for the GO modifications. Magoo copes with 
this requirement by introducing the dialog objects. 

An MDialog, DiO, is an object responsible for implementing the application dy
namics. Most of the DiOs are responsible for the creation/management of a pre
defined class of GO. To receive low level events a specialised dialog is required, 
the MEventHandler. For the communication with a X dependent display an MX
tEventHandler can be used and will be responsible for managing X window de
pendent events. The communication with a dialog is a two step process. First an 
object subscribes the service. For example, if a client wants to be informed of any 
button pressed the following message must be sent: 

server -> subscribe (this, butdown); 

as soon as a "button pressed event" is received the client will be informed: 

client -> receiveEvent (this, curEvent); 

An event is a Data object of MEvent class used both to define a subscription and 
to store a low level event message. 

Inesc Logo D·Window 

Figure 5: A Dialog managing "Inesc Logo" 

Figure 5 shows a dialog responsible for the "Inesc Logo" editing. The editing op
erations will be based on "Move" and "Key A PresslRelease" event types. In the 
example only "D-Window" is used for event input but the "Inesc Logo" is visible 
inside three different windows (figure 4). 

7 Extending Magoo 

It is planned to extend Magoo in different directions: 

• to create new Virtual World abstractions, including 4D Objects (3D + t) . 

• to create new interaction techniques (Dialog classes). 
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10 Conclusions 

Magoo is an architecture suitable to fulfill Direct Manipulation requirements both 
at the application and at the interface level. The object-oriented nature of the 
architecture allows an easy integration of any kind of output graphic pipeline, 
interaction techniques and new physical input devices. 

A first version of the Magoo Architecture, a prototype, was available before the 
beginning of the HYPERF ACE Project and was used to implement several Man 
Machine interactive Graphic System based on Direct Manipulation. The key ideas 
were already experimentally validated but further programmer's feedback is re
quired. 

The Magoo architecture as been used to create several complex Direct Manipulation 
based Interactive Graphic Applications including two 3D editors. 
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Architecture and Use of D2M2, 

the Delft Direct Manipulation Manager 

Johan Versendaal, Willem Beekman, Marco Kruit, and Charles van 
der Mast 

A user interface management system is presented based on an object-oriented approach to 
the design of both the user interface and the application semantics. The data for user interface 
and application semantics are stored and processed apart. However, the modelling technique 
is identical for both, using the same tool for semantic data modelling. The modelling technique 
supports most characteristics of the object-oriented paradigm: objects, classes and inheritance. 
The diagrams used can describe amongst others the concepts of classification, aggregation, 
decomposition, generalization, specialization and role attributes. Attributes of objects can be 
described in property forms. Transition diagrams, including pre- and post-conditions, are applied 
to specify the interaction possible to the end user. The concepts supported by this tool are 
described and discussed. This tool as well as the products it can produce are based on a 
graphical user interface. From these specifications a run time version of the application can be 
generated. A protocol is used for the communication between application and user interface 
manager during run time. The features of Delft Direct Manipulation Manager are demonstrated 
with the design and implementation of a small application with direct manipulation. 

1 Introduction 

The need to develop and maintain complex information systems has triggered new 
approaches to system design and development. The object-oriented paradigm ad
dresses some of the main problems with the traditional life-cycle model with dis
tinct phases. Most references, see e.g., [Korson and McGregor, 1990], eliminate the 
boundaries between phases of the traditional activities analysis, design and im
plementation. This offers alternatives to the waterfall model because all activities 
can be integrated within the same conceptual framework. Explicit classification 
structures during the analysis phase can be the base for a seamless transfer to 
implementation with object-oriented languages. Moreover, it seems natural that 
design pieces are closely identified with real-world concepts which they model. 
This holds both for the development of the semantics and the user interface of an 
application. 
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Therefore we insist upon regarding user interface development as a natural part of 
the application development when done according to the object-oriented paradigm. 
One of the consequences of this approach is that user interface design should be 
done in parallel with information analysis and application design. This approach 
also provides a way to cope with complexity and to reuse objects and methods. 
Another consequence is that user interface design, like system analysis, should 
start top-down, using logic diagrams. When more details concerning objects become 
available during the design, independent interaction tasks to be performed on a 
predefined set of objects by the end user could be specified. These tasks provide 
entries for bottom-up rapid prototyping. At this point object-oriented design of 
the whole system and task-oriented design of the user interface come together. 
This would give the redemption of the waterfall model. One main purpose of the 
research described in this paper is to support this top-down approach as the base 
of a formal description of the design. 

Separation of user interface code and application code is important to support 
maintainable complex information systems. Many generations of solutions have 
been proposed and implemented in pursuit of this goal [Rix, 1990]. The separation 
of the user interface and the application can be considered during execution, but 
also during the development of the software. The user interface can be designed 
more or less separately, depending on the completeness of separation. This means 
that human factors specialists are able to bring up their experience more easily 
within a multi-disciplinary design team. Via this separation, reusability of the 
user interface components also provides consistency of user interfaces between 
applications. 

To establish the separation of the application and its user interface, user interface 
management systems (UIMSs) were built. The purpose is to let the UIMS provide 
an environment for management of user interfaces, both during development and 
execution. During execution, the application simply sends requests to the UIMS 
and the UIMS takes care of the interaction process, checks syntax and returns 
the result of the user's actions to the application. The application does not know 
how the information is obtained from the user or how its (feedback) information is 
presented to the user. Therefore the user interface can be changed in appearance as 
well as in behavior without the application noticing it. The UIMS also encourages 
the reuse of existing interface modules. This provides a flexible environment for 
system designers and programmers as well as a comfortable and familiar working 
environment for the end users. 

Delft Direct Manipulation Manager (D2M2) is a UIMS under development at Delft 
University of Technology. This UIMS manages graphical user interfaces which 
allow direct manipulation on Unix workstations. D2M2 consists amongst others of 
D2M2edit and D2M2run, the run-time part of the UIMS. In D2M2 a total separation 
of user interface and application is the main objective. D2M2 can be positioned 
within the 4th and the future generations of [Hix, 1990]. It supports maximal 
separation between both data and processes of user interface and application. At 
the same time D2M2 tries to integrate the methodologies and concepts of the user 
interface designer and the software engineer. 
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1 interaction task __ I computer task + feedback tas~1 

t executIon executIon ~ 

: .......................................................................................................................................................... :: 

Figure 1: Sequencing in human-computer interaction 

2 Concepts 

Applications are designed to help users in performing tasks; therefore human
computer interaction should never be an independent goal, but a means to trigger 
and evaluate computer actions. We define a computer action as the execution of a 
computer task; the triggering of a computer task is performed by an interaction 
task; the user can evaluate the results of the computer action by a feedback task. 

We are now able to describe the sequencing in human-computer interaction for 
a large number of applications in terms of interaction tasks, feedback tasks and 
computer tasks. A user executes an interaction task; the interaction task will trigger 
a computer task; during and/or just after computer task execution feedback tasks 
can be executed. 

The sequencing in human-computer interaction is depicted in Figure 1. This se
quencing is not only valid for command language interaction styles, but also for 
Direct Manipulation and others. 

During interaction task execution so called user interface data (VI data) is con
sulted and updated. Examples of VI data are windows, icons, scroll bars, text 
fields, etc. Also during feedback task execution VI data is consulted and updated. 
During computer task execution application semantics data (AS data) is consulted 
and updated. In order to achieve independence of user interface and application 
semantics, VI data is separated from AS data and stored independently. If AS data 
must be consulted during interaction task execution in order to update the VI data, 
we say that semantic feedback must be accomplished. 

VI data is a collection of instances of VI data types. VI data types are specified 
by identifying classifications, generalizations and specializations: this specification 
process is identical to the process of semantic data modelling (see e.g., [Smith and 
Smith, 1977, Ter Bekke, 1991]). Further, every VI data type has to be specified 
in a set. Each set can be instantiated, which means that VI data of the set is 
visualized in a rectangular region (often a window) on screen. If sets are related to 
one another (e.g., in the case that if a certain set is destroyed, its related set should 
also be destroyed) aggregation relations are specified between them [Ter Bekke, 
1991]. 

We distinguish interaction sets and feedback sets. During run-time, an instance 
of an interaction set allows for both user interaction in its rectangular region as 
well as output offeedback tasks; an instance of a feedback task does not allow user 
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interaction in its rectangular region: only output of feedback tasks can be directed 
to the rectangular region. 

Interaction tasks are specified by transition diagrams [Green, 1986], in which tran
sitions can be traversed when a certain premise, a boolean function which consults 
UI data, holds. On traversing a transition UI data can be updated, so realizing lex
ical and syntactic feedback [Foley, et aI., 1990]. We specify so-called data transfer 
with an interaction task in order to send the result of the user interaction to the 
application. Interaction tasks belong to an entry. Not the name of an interaction 
task, but its entry name is known to the application. If different interaction tasks 
produce the same data to be sent by the data transfer, we can group these tasks in 
the same entry. As a consequence the application could receive, during run-time, 
data from the user, not knowing what interaction task it came from; only know
ing that it came from a certain entry. Obviously, this construction supports the 
emphasis on the separation of user interface and application. 

Feedback tasks are specified by functions which consult and update UI data. AS 
data are specified by identifying AS data types, generalizations, specializations, ag
gregations, decompositions and attribute identification like in semantic modelling 
(see e.g., [Smith and Smith, 1977]). We specify computer tasks by programming code 
which consults and updates AS data. We support semantic feedback by semantic 
feedback functions which consult AS data. 

logically integrated environment for design and maintenance 
of both UI and application component 

UI process protocol 
Application 
process 

Application data 

Figure 2: Separation of processes and data, the main goal of D2M2 

Concluding, we can sununarize that as a goal for this research we have chosen to 
develop concepts and architecture which separate the components "UI" and "appli
cation" completely, both for design and at run-time. And, for run-time a commu
nication protocol has to be defined between both components which also supports 
semantic feedback. While the design process and the storage of both components 
are separated, at the same time the developing environment supporting this archi
tecture should be suitable for multidisciplinary design teams of UI designers and 
software developers (see Figure 2). 



www.manaraa.com

140 Johan Versendaal, Willem Beekman, Marco Kruit, and Charles van der Mast 

end user 

Figure 3: The main components of D2M2 and its relations 

3 Architecture 

D2M2 is a tool set which allows for designing, implementing, interpretation and 

maintaining applications with a separated user interface. The interpreting part 

of D2M2 is D2M2run; it executes the user interface by interpreting the VI data 

and takes care of the communication with the application semantics. In principle, 

D2M2run can manage the user interface of more than one application at the same 

time. The implementation and maintainence part of D2M2 is the tool D2M2edit; 

it allows for defining and editing of both the user interface (consisting of VI data, 

sets, feedback tasks and interaction tasks) as well as the application semantics 

(consisting of AS data, computer tasks and semantic feedback functions). The design 

part (D2M2design), not discussed further in this article, allows for designing the 

user interface and the application semantics from formal requirements according 

to certain methods and techniques. In Figure 3 the relations between D2M2design, 

D2M2edit, D2M2run and their environment is depicted. 

3.1 D2M2edit 

The main functions D2M2edit provides for can be summed up as follows: 

• Specification of programs 
The major part of D2M2edit; this includes specification of the user interface 

elements, the application elements and the communication between these two 

in the run-time environment. 

• Management of reusable interface components 

Through extensive reuse of user interface components from previous projects, 

substantial savings in designing, building, testing and training can be made. 

D2M2edit offers a user interface library for storage and retrieval of user 

interface elements. 

• Support for documentation and administrative tasks 

By providing simple and efficient documentation facilities, concise and fault-
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less reports can be generated, while support for project management, like 
authorization, can ease administration. 

• Conversion of designer specifications to run-time specifications 
To be able to run an application, specified with D2M2edit, these designer 
specifications can be transformed to specifications which can be interpreted 
by the D2M2run run-time environment. 

Since D2M2edit will frequently be used by non-programming designers and ad
ministrators, it offers a graphical interface, based on Sun's OPEN LOOK standard 
[Sun, 1989]. By using a mouse to manipulate windows, buttons, menus, etc. and 
only requiring the keyboard when strictly necessary, the environment is easy to 
learn and use for every kind of user. 

application ~ 
file ..... 
management 
functions 

printing function ..... 
generation function-.. 

@] TU Delft · D2M2 Application Editor 

[APPLICATION'" J ( LIBRARV'" ) 

Rottio.o 
Store 
Catalogue 
Create New 
oorota 

,,'Dil«i'I:. ' ,. ...... . , . ':.:.:. . , UI data 
Print Interaction sets 
Cenerata reodback s.ts 

Interact Ion tasts 

FeoabaCk tasks 

AS data 
Application coda 
Seuntlc feedback 

library 
~ management 

functions 

application 
editing 

~ facility 
functions 

Figure 4: Main command window of D2M2edit with selected submenu "Open edit 
window" containing several ''views'' on the application 

The main functions ofD2M2edit are shown in the editor window after starting up. 
Figure 4 depicts the editor window with the major pull down menus to activate the 
main functions ofD2M2edit. 

One can choose between library maintenance and application (project) manage
ment. Only the latter will be presented, for this is the prime function of the de
velopment environment. Selecting application management brings up its menu, 
offering: 

• Application file management, which comprises retrieval, storage, cataloging, 
creation and deletion of applications under implementation. 

• Application editing facilities, the creation and manipulation of the user inter
face and application elements through the use of "views" (see below). 

• Printing of documentation of the application being edited. 
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• Generation of run-time specifications from the user interface and application 
designer specifications. 

Of these, the application editing best shows the graphical interactive character of 
D2M2edit. As explained before, a set of specifications under D2M2 consists of user 
interface elements (the UI data types, interaction sets, feedback sets, interaction 
tasks and feedback tasks) and application elements (AS data types, application 
code and semantic feedback functions), together with the parts required for com
munication (entries to group interaction tasks, data transfer code to return results 
of interactions and creation code for instantiation of an interaction or feedback set). 
All these can be edited, to which end several views are available. A view displays 
a small portion of the specifications of one type of element, and allows easy and 
manageable creation and manipulation of user interface and application, giving 
all information required and retaining consistency without bothering the designer 
with irrelevant details or distracting relationships. 

An example of such a view is the "UI data type view". Through such a view, the 
designer can specify the hierarchy of data types comprising the interface and their 
behavior. Since D2M2 is based on semantic data modelling the specification of the 
data types is realized with a graphical interpretation of this model [Ter Bekke, 
1991]. The basic UI data types, offered by the relevant window manager and avail
able through the built-in library, are always present and called "native" types. A 
special UI data type "native" is ever present in an application: every UI data type 
directly related to the window manager is directly or indirectly derived from "na
tive" by specialization, inheriting its basic properties and methods, but adding some 
of its own. UI data types not related to the window manager are specializations of 
the ever present UI data type "own". 

Graphically, in this view two objects can be distinguished: UI data types, repre
sented by labeled rectangles, and specialization relationships, shown as labeled 
lines connecting the UI data types. Figure 5 depicts the way UI data types and 
their relationships are represented in D2M2edit. 

Buttons in the view window are used to Add new types, Include types created 
earlier, but not visible in this view, Retrieve types from a library and Derive a 
subtype (i.e., create a specialization between types). These are all functions that 
place data types in the view. All other functions to be performed on these graphical 
objects are invoked through manipulation of the objects themselves, as dictated 
by the concept of direct manipulation interaction. They fall into two categories: 
functions which merely change the appearance of the view and functions changing 
the UI data type specifications. 

In the first category are, for example, actions to move objects around the view's 
graphics canvas by dragging (conforming to the OPEN LOOK standard), automati
cally redrawing all connected objects. Another feature of D2M2edit which serves to 
keep the views as clear as possible is the "expanding" of graphical data types. When 
an existing UI data type is added to a view, it probably has several relationships 
with other types. To show these as well would result in a cascade of inclusions, 
cluttering up the display. Only showing the single type would misinform the de
signer. D2M2edit displays such a type as a double-edged rectangle (see UI data 
type "canvas" in Figure 5). When the designer requires more information the type 
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UI data types: native (generalized OPEN LOOK-type) 
button 
canvas (can be expanded) 
own (generalized not-OPEN LOOK-type) 
square 
line 
dot 

attributes of own: x (x-position of object on screen) 
y (y-position of object on screen) 
width (width of object on screen) 
height (height of object on screen) 

methods of own: GecxO, SecxO 
Get-yO, Set-yO 
GeCwidthO, SecwidthO 
GeCheightO, SeCheightO 
OwnO (constructor) 
-OwnO (destructor) 

UIO 

Tvpe name: "'fYW::.:n.:...-____ _ 

Description: 
..J!oot object for fYWn types 

Simple _Ibutes 

Name:;.;;::;::;~~~~,-_ 
Tvpe : I integer I real I boolean I text I ger 

Size : _, _83 

x (i nteger,4) 
y (i nteger,4) 
width (integer,4) 
height (lntegerA) ~ 
~---------~= 

Methods 

IntGeLxO ,= ..... 
IntGeLvO 
int GeL widthO 
Int GeLhelghtO 

Header: ... _______ _ 

Figure 5: Snapshot of UI data view and property window of D2M2edit 

can be "expanded", causing D2M2edit to arrange all directly related types in the 
view as well. 

The second category of functions actually edits the specifications of the UI data 
types. Examples are: copying and deleting types (with their connected relation
ships) and editing the properties of data types and specializations. A special prop-
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erty window is placed on screen when the designer clicks on the object, displaying 
all properties and allowing them to be edited. E.g., in the case ofUI data types there 
are the name, description, attributes (each with a name, data type and size) and 
methods (each with a return type, parameter list and body). In Figure 5 a snapshot 
ofD2M2edit of the UI data property window is depicted. 

Analogous to the previous view, there are the (interaction and feedback) "set views". 
These allow the designer to create or edit interaction sets and feedback sets. A set 
consists of a collection of UI data types created earlier on or retrieved from the 
library, and parent-child relationships between some of these types, indicating 
their hierarchy when used together in an application. A child is always displayed 
inside its parent. 

Again, the types are displayed as rectangles, while the relationships are repre
sented by connecting lines. Within a set, no changes can be made to the actual data 
types used; this must be done in UI data type views. 

The third view of interest is the "interaction task view". After having selected an 
interaction set, the designer can create or edit an interaction task. Such a task is 
graphically displayed as a state-transition diagram, where one creates and places 
the states (circles) and the connecting transitions (directed arcs). Pre- and post
conditions for the transitions are regarded as their properties, and so can be edited 
through a property window. The layout of the diagram can simply be changed by 
moving the graphical objects. Functions are furthermore provided to specify data 
transfer code and the entry to which this task belongs, and to check the validity of 
the transition diagram (determinism, islands, initial/final states, etc.). 

The above represents a briefimpression of part of the facilities offered by D2M2edit. 
Consistent use of intuitive interaction mechanisms and graphical displays makes 
it likely that D2M2edit is a suitable environment, in particular for user inter
face designers, not accustomed to heavily text-based programming environments 
[Versendaal,1991]. 

3.2 D2M2run 

D2M2run manages the user interface for the application during run-time. We recall 
that the static part of the user interface is implemented as a semantic data model in 
D2M2edit. The dynamic part ofthe user interface is implemented as state transition 
diagrams. The static part is translated into C++-classes, which can be interpreted by 
D2M2run directly; state transition diagrams are processed by D2M2run, according 
to the user input and pre- and post-conditions within the application. 

During run-time, D2M2run and the application communicate with each other us
ing a special protocol. This protocol allows the application to specify the type of 
user interface by enabling entries. After this enabling D2M2run actiyates the user 
interface and starts waiting for the user input. Details of the protocol and the 
implementation are described in [Kruit, 1990]. 

During the human-computer interaction, D2M2run handles all input and output 
until the user completes a command or data input sequence. D2M2run takes care 
of lexical, syntactic and semantic feedback [Foley, et aI., 1990]. However, when 
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during run-time, D2M2run needs information from the application semantics in 
order to produce semantic feedback, it sends a request to the application to give it 
the required information. It cannot access the application semantics data itself. 

When the user completes an input sequence, D2M2run notifies the application by 
telling it what type of input has been retrieved from the user, via the entry name, 
along with the appropriate data. The application interprets the input sequence 
and executes a relevant computer task; during and after computer task execution 
requests for feedback task execution can be sent. At no time does either the appli
cation semantics process or D2M2run have access to each other's process data. 

Thus, the application requests D2M2run to manage its user interface of which it 
only knows its functionality. D2M2run only manages the user interface as it was 
told to do by the specifications in D2M2edit, sending complete input sequences, 
commands and/or input data and leaving the interpretation to the application. The 
application does not know how the input was retrieved from the user and how 
its output and feedback is presented to the user, while D2M2run does not know 
what the semantic meaning of the data is which it sends and what the objects it 
manages mean to the user or the application. The only thing they know is how to 
communicate with one another. 

Since the communication channel can vary from a local message passing mechanism 
to a satellite connection, D2M2run and the application semantics process may run 
on any machine. As long as they use the protocol they can communicate, thus 
allowing D2M2run to handle the application's user interface. 

4 Example 

The design (with D2M2design) of an application roughly consists of three (related) 
steps. The first step is to determine the functionality of the application and the 
application data types. The second step is to determine what functional regions the 
user interface of an application needs and what commands the user can give. The 
third step is to precisely determine the user interface data types and lay-outs. As 
an example of these steps we present a simple file manager. 

The file manager must perform the following commands: 

1. a group of selected files may be deleted; 

2. a file may be copied to another file or directory; 

3. a group of selected files may be copied to another directory; 

4. the working directory may be changed; 

5. the file manager can be quitted. 

These requirements result, via D2M2design, in the specifications ofthe application 
semantics data types (see Figure 6) and the functional region (interaction set) (see 
Figure 7). They are implemented in D2M2edit. 

The user can change the working directory (requirement 4) by clicking a uiJiir 
object of the file manager. The transition diagram for this interaction task is, shown 
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~ 
B 

AS data types: dir (directory in file system) 
file (fIle in file system) 

Figure 6: Application semantics data types of file manager 

Figure 7: UI data types and relations in the one and only interaction set of the file 
manager 

in Figure 8. The lay-out of the file manager as produced by D2M2run is shown in 
Figure 9. 

e __ t _O ---...~ 

to: button clicked on ui_dir 

Figure 8: Button clicked on uLdir 

The implementation presented results in the following entry identifications, which 
are the identifiers with which the application can activate the commands mentioned 
above and with which D2M2run can indicate what command the user has given. 

• FM..ENTRY-.FILES...DELETE 

• FM..ENTRY -.FILES_COPY 

• FM..ENTRY...DIR_CHANGE 

• FM..ENTRY_QUIT 
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Fllemanager 

Figure 9: Lay-out of the file manager as produced by D2M2run 

Notice that the second and third command (of the requirement list) are joined 
into one entry identification, since they are semantically the same. In the second 
command the group simply consists of one file. The application must have the 
possibility to add instances of user interface data types to the functional region, 
delete them and tell D2M2run it is terminating. To establish that, the following 
feedback task identifiers in D2M2run can be distinguished: 

• FM_CREATE_UI...FILE 

• FM_CREATE_ULDIR 

• FM-.DELETKUI...FILE 

• FM-.DELETE_UI-.DIR 

• FM-.DELETE..ALL 

• FM_QUIT 

Of course the file manager must have a functional region in which the instances of 
user interface data types representing files and directories are placed and manip
ulated by the user. The function region is placed within a frame. The identifier in 
D2M2run for this functional region is: 

• FILEMANAGER 

These are all identifiers needed for the communication between the ine manager 
application and D2M2run. 

5 Conclusions 

D2M2 aims to separate the user interface data (UI data) and the application se
mantics data (AS data). This separation proved possible during run-time using 
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a well defined protocol for triggering and communication at the technical level. 
Another advantage of separation is that, during design, human factors specialists 
and information engineers can focus on their own view and expertise. By using the 
same object-oriented modelling paradigm the understanding and the co-operation 
within a multidisciplinary design team may be improved. An important result may 
be that not only creation of some kinds of interfaces will be shortened dramati
cally but that the creation of the whole application including user interface and 
application semantics will become more efficient. Moreover, D2M2 provides a basis 
to alter the user interface in a rather easy way, because the user interface is not 
highly intermingled with the application semantics. As long as the protocol between 
user interface and application are obeyed, user interface changes do not affect the 
application semantics. 

Currently some realistic applications with graphical user interface are being de
signed in order to explore these advantages [Versendaal, 1991]. Later, controlled 
experiments are needed to prove this hypothesis on object-oriented design in dif
ferent application domains. The current version of D2M2 supports only some of 
the trajectory during the design and maintenance of applications and their user 
interface. Future research is planned for prototyping the lay-out and generating 
more efficient run-time code. 
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Appendix 

Semantic Data Modelling (for an extensive discussion see (Ter Bekke, 1991» Se
mantic data modelling is a fairly new way of structuring and manipulating data, 
overcoming lots of problems encountered in other data models such as the rela
tion model. In semantic data models identification and properties of data types 
are strictly separated. The model is based on the semantics of the type and their 
relations: they reflect the reality as it is. No real transformation is necessary, no 
rules have to be satisfied. All that is needed is careful representation of reality. 
Ambiguities and inconsistencies are then excluded. 

In semantic models a data type can be represented by a rectangle with its name 
inside (see Figure 10). 

name 

Figure 10: A representation of a data type in a semantic model 

ABSTRACTIONS 
The semantic data model knows just two abstractions which have a very strong 
relation with natural languages. They correspond with the two verbs to have and 
to be. Every object in reality can be described by telling what it has and what it 
is. The designers of databases only have to describe reality this way. In database 
design we distinguish: classification, aggregation and generalization. 

CLASSIFICATION 
Classification is cutting reality up in properties of types. For instance "name" and 
"number" are classifications. They simply state the existence of certain properties 
and lack the relation between data. They represent data, not information. 

AGGREGATION 
Aggregation is defined as the collection of certain properties into a type. Such a type 
can also be a property of another type. The name of the type represents the relation 
ofthe properties in reality. So an aggregation contains data and forms information. 
For example, "name" and "number could be aggregated into "directory entry" (see 
Figure 11). Aggregations can be expressed by the verb to have: a 'directory entry" 
has a "name" and a "number". In the semantic data model aggregations are repre
sented by connecting the lower edge of the aggregating type with the upper edges 
ofthe aggregated types. 

Name and number are definite properties of entry: every entry has exactly one name 
and one number. Entry is a variable property of name and number: both name and 
number can belong to any number of entries. Aggregation also has a reverse. The 
description ofa type by a collection of properties is called "decomposition". The type 
"entry" can be decomposed into "name" and "number". 

GENERALIZATION 
Lots of problems can be described just with aggregations. However, aggregations 
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type entry = name, number 

Figure 11 : Example of an aggregation-decomposition 

alone may not do the job. For instance, "name", "address" and "phonenumber" could 
be aggregated into a type called "person". In an organization, however, a person 
could be an employee or a client. Employees could have properties that client do not 
have, like "salary" and "function". Clients could have properties like "client number" 
and "credit". The model would be unnecessary complex when only aggregations 
would be used: every aggregation 'person" has, will be duplicated. Trouble really 
emerges when "person" is a property of another type. That type would have both 
"client" and 'employee" as a property, while these types are mutual exclusive. A 
person is either a client or an employee. 

In reality a client is a person and an employee is a person. They inherit the prop
erties of person. In the semantic data model this relation is called generalization. 
Generalization can be defined as the collection of common properties from different 
types into one new type. The type "person" is a generalization of "employee" and 
"client". These new types are specializations of the type "person". Specialization is 
the reverse of generalization. 

In the type definition the generalization is placed between brackets. In the semantic 
data model a specialization is represented by a connection of an upper corner of the 
generalized data type with a lower corner of the specialized data type. 

The specializations of person as shown in Figure 12 mutually exclude each other: 
a person is either an employee or a client. If they could be both, each specializa
tion should have a connection with person. Mutually excluding specializations are 
stacked upon each other as in Figure 12. 

type person = name, address, phonenumber 
type employee = [person], salary, function 
type client = [person], client_number, credit 

Figure 12: Example of a generalization-specialization 

INTEGRITY RULES 
Models need a fixed interpretation. To achieve this there are integrity rules to be 
upheld. Semantic data models have two integrity rules, which do not have to be 
specified separately. Ter Bekke (1991) distinguishes: 
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Figure 13: Example of role attributes 

• Relatability: every property that occurs in a type definition is related to ex
actly one type with the same name. Every type may correspond with several 
properties . 

• Reversibility: every type definition is unique. There are no different type 
definitions having the same name or having the same collection of properties. 

ROLE ATTRIBUTES 
Role attributes are used when a type has more than one attribute of the same 
type and when a type is a generalization of non-mutual excluding types. When a 
type definition contains two properties of the same type, role attributes are used 
to distinguish them. Role attributes can be identified by a prefix followed by an 
underscore. For instance, when a person has two phonenumbers, one of his office 
and one of his home, the roles may be "home" and "office": 

type person = name, home..number, office..number 

These roles are added to the model by placing them near the connection (see Figure 
13). 

Role attributes may also be used to distinguish between mutual exclusive and 
non-mutual exclusive specializations. A group of specializations which are mutual 
exclusive have the same role. Specializations of different groups have different 
roles. 
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An Object-Oriented Testbed for Global 

Illumination 

Shenchang Eric Chen, Kenneth Turkowski, and Douglass Turner 

Global illumination rendering involves the simulation of light interreflections between emitting 
and reflecting surfaces. Accounting for global illumination is necessary in the quest to generate 
images indistinguishable from real photographs. However, computing global illumination effects 
is a difficult problem and no algorithm published so far is capable of Simulating all the effects 
in a reasonable amount of time. In this paper, we present a research testbed designed to 
facilitate experimentation on new global illumination algorithms. The testbed is object-oriented 
and encapsulates the basic components of rendering into classes that can be derived and 
overridden easily. The testbed allows new geometry, shading methods and display architecture 
to be added orthogonally. We have implemented a number of new rendering algorithms with 
the testbed and results are demonstrated. 

1 Introduction 

Realistic image synthesis is the process of creating computer synthesized images 
with the goal to make the images indistinguishable from real photographs. The 
process involves the simulation of light interacting between the surfaces in an 
imaginary scene. This type of image synthesis is usually referred to as the rendering 
of "global illumination", because the illumination of a surface cannot be determined 
alone without knowing the illumination and geometry of the other surfaces. Well 
known examples of global illumination effects include shadows, specular reflection 
and refraction, etc. Less well known examples are color bleeding and caustic effects. 

Global illumination is generally much more expensive to compute than the ''local 
illumination" effects, which only involve the interaction between light sources and 
the illuminated surface. However, global illumination is necessary in creating real
istic images. Traditionally, global illumination effects are computed with renderers 
specialized in some of the effects, such as ray tracing for shadows, specular reflec
tion and refraction, and radiosity for color bleeding. In most cases, these specialized 
renderers are not capable of rendering all the effects. In fact, the problem of com
puting global illumination is an on-going research area that has received much 
attention in recent years. To facilitate the research and development of new ren-
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dering algorithms, we present an object-oriented rendering testbed designed with 
this purpose in mind. 

Although rendering systems are generally complex, they all contain three basic 
components: geometry, display architecture and shading methods. Geometry refers 
to geometrical primitives that a renderer can handle directly. Many renderers re
quire diverse primitives to be converted to a common representation such as poly
gons before they can be rendered. The display architecture includes the projection 
and hidden surface algorithm that a renderer uses to display a scene from a camera 
setting. Commonly used display algorithms include z-buffer [Catmull, 1974] and 
scan-line [Watkins, 1970] methods. Ray tracing also can be used as visible surface 
determination method. Shading methods include illumination models that a ren
derer uses to compute the intensity at a point in space. Simple shading models such 
as Gouraud [Gouraud, 1971] and Phong [Phong, 1975] only need information about 
the light sources and the point to be shaded. Therefore, they are not capable of gen
erating shadows or simulating materials such as glass. More sophisticated shading 
models such as ray tracing [Whitted, 1980] allows a wider range of materials to be 
simulated more realistically. 

Since the above components are fundamental to most rendering research, we en
capsulate them into three basic object classes in our testbed. The Geometry class 
serves as the base class from which all the renderable geometry is derived. All 
the geometry objects are parametrizable and have some common operations such 
as geometrical transformation and responding to geometry queries, etc. The Scene 
class encapsulates the display architecture and contains all the global information 
such as cameras, lights and all the renderable geometry. The Scene is the driving 
force ofthe renderer. The Shader class encapsulates the materials and the shading 
models. The common operation of shaders is to evaluate the intensity at a point. By 
deriving and overriding these classes, different renderers or rendering styles can 
be developed and experimented with quickly. 

Most previously published rendering testbeds are more limited than ours in the 
range of rendering properties that can be experimented with. Whitted and Weimer 
presented a software testbed designed for experimenting with shaders and geome
try in a generalized polygon scan converter [Whitted and Weimer, 1981]. Hall and 
Greenberg presented a testbed which applied an improved illumination model to a 
fixed set of geometry [Hall and Greenberg, 1983]. Although the pictures created by 
them were realistic at the time, the testbed was not flexible enough to allow new 
algorithms to be built upon because the illumination model and geometry were 
fixed. Grant et. aI. [Grant et aI., 1986] addressed the problem of displaying diverse 
types of geometry in an object-oriented system. In their design, each geometry and 
its derived classes know how to subdivide themselves into polygons that can be dis
played. The shading and global illumination problem was not addressed. Potmesil 
and Hoffert presented a set of software tools which act as UNIX filters and can 
be combined together in a pipe sequence [Potmesil and Hoffert, 1987]. The pipe is 
unidirectional and is not quite suitable for global illumination computation, which 
is often iterative. Nadas and Fournier extended the pipe to a more general directed 
acyclic data flow system [Nadas and Fournier, 1987]. The data flow system provides 
a nice user interface to perform dynamic binding of display processes. However, it 
is still not appropriate to prototype global illumination algorithms because of its 
acyclic nature. The Reyes image rendering architecture presented by Cook et. aI. is 



www.manaraa.com

10. An Object-Oriented Testbed for Global Illumination 157 

not really a rendering testbed[Cook et al., 1987]. However, its use of programmable 
shaders (i.e., shade tree [Cook, 1987]) makes it flexible enough to incorporate new 
shading algorithms. The disadvantage of Reyes' approach is that it is a fixed display 
architecture and requires all the geometrical primitives to be reduced to microp
olygons. Therefore, algorithms such as radiosity are very hard to implement in this 
framework. 

In the following sections, we present in details the basic object classes in our testbed. 
Example applications of the testbed in ray tracing and radiosity research are also 
illustrated. 

2 Class Overview 

The object-oriented terminologies we use throughout the paper are consistent with 
those in [Stroustrup, 1987]. Class is an abstract data type that contains both data 
and functions that operate on the data. Classes can be derived to create new classes 
that inherit the properties of the parent classes. The derived classes can modifY the 
parent classes by defining new functions or overriding the parent's functions. Object 
is an instance of a class (i.e., we also use object to refer to the geometrical entities 
that comprise a 3D world. The different usage should be obvious from the context). 
Virtual functions allow functions to be called without type information. They enable 
objects of various types to be treated in a uniform manner. 

A basic object in our testbed is Scene. The Scene object is the global structure that 
organizes the 3D world. It includes a place to store the resulting image, the camera, 
the lights and the Renderable objects. All of the elements of the Scene are accessible 
to any other objects. 

Each Renderable object contains instances of two objects: Geometry and Shader. 
Geometry describes the shape of a geometrical entity. Shader describes how light 
interacts with the entity. The communication between Shader and Geometry is 
accomplished through Neighborhood, an abstraction ofthe differential geometry at 
a point on the entity (e.g., local normal or tangent vectors). 

2.1 Geometry 

It is desirable to support a variety of geometrical primitives such as polygons, 
quadrics, and patches, and to accommodate new ones in an orthogonal manner. The 
essential requirements of a geometrical primitive were abstracted into the base 
class Geometry, which are listed below: 

• To transform the geometry (rotate, scale, translate). 

• To determine rough spatial bounds (box, sphere, etc.). 

• To tessellate into a mesh of polygons. 

• To evaluate differential properties (normal, curvature, etc.) at a point. 

• To intersect with a ray. 

• To classify a point (in, out) with respect to the surface. 
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Figure 1: The current implementation of the Geometry class hierarchy 

Some of these functions can be supplied directly by the base class Geometry. For 
example, many geometrical primitives are represented by a set of points, and trans
formations on those points yields a similar transformation of the geometrical prim
itive. The bounding volume of a set of points sometimes also bounds a geometrical 
primitive defined by those points (e.g. polygon, B- spline surface). Similarly, if 
surfaces are parametrized by (O::;luieq and O::;vieql), then a generic tessellation 
procedure need only evaluate (x, y, z) at a grid of points (u, v). The Geometry class 
provides these capabilities as a default. These and other methods of Geometry are 
virtual, however, so that subclasses can override them if the assumptions donUt 
hold true. 

Each primitive needs to implement its own ray-intersection routine. It is up to the 
primitive to cache any special information that may accelerate this process. 

With a closed surface, a point is classified as either inside or outside the surface. 
For an open surface, the point is either on one side or another of the extension of 
the surface. This capability is useful for spatial decomposition, which can in turn 
accelerate global illumination computations. 

The current Geometry class hierarchy is shown in Figure 1. 

For shading purposes, it suffices to approximate geometry at a point to first or 
second order, i.e. normal, derivatives, curvature. Shaders can be easily decoupled 
from Geometry by communicating through a N eighborhoodobject. Each geometrical 
primitive can evaluate its Neighborhood, which is described in more details in the 
next section. 

2.2 Neighborhood 

A point on a surface can either be represented in the world space (x, y, z) or the 
parametric space (u, v). A sphere, for example, can be parametrized in terms of two 
angles () and </J: 

x = cos () sin </J, y = sin () sin </J, z = cos </J 
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The inverse parametrization, (x, y, z) --+ (0, <f;), is a projection (i.e., taking a 3-
space point onto the parametric space), which is well-defined when the point is on 
the surface, and hopefully tolerant when the point is not exactly on the surface. 
A geometrical primitive is able to convert back and forth between these 2- and 
3-dimensional spaces. 

Once a function is established, we can ask about derivatives. The first partial 
derivatives, o(x, y, z)/o(u, v), otherwise known as tangent vectors, can be useful for 
anisotropic shading [blinn, 1978] and bump mapping [Kajiya, 1985]. The cross 
product of the partials yields a normal. The first partials can be combined into a 
metric tensor, which can be used to measure length and area on a surface. The 
second partial derivatives can be combined into a curvature tensor, which is useful 
for anti-aliasing in reflection mapping [Blinn and Newell, 1976] and pencil tracing 
[Shinya et al., 1987]. Each geometrical primitive is able to calculate its first and 
second partial derivatives; the Neighborhood object itself can compute the metric 
and curvature tensors if necessary. 

A point on a surface, along with its tangents and normal, establishes a coordinate 
frame. The Neighborhood object can convert between this frame and others. For 
example, it can project a pixel onto a surface, and measure its area in parametric 
units for anti-aliasing texture maps. 

2.3 Shader 

Our approach to shading is to hide in the shader the functionality that traditionally 
resides in the renderer, such as ray tracing, radiosity and caustic computation. We 
believe this approach is both flexible and powerful because it separates the shading 
computation from the rest of the rendering. 

The main difference between our shaders and the shade trees [Cook, 1987] used in 
Reyes [Cook et aI., 1987] and RenderMan [Upstill, 1990] is that our shaders are 
bidirectional. They not only can evaluate the intensity at a point on a surface but 
also can deposit energy to a surface. The Shader class has two virtual functions: 
Collect and Deposit. Collect takes a Neighborhood of a point on a surface, evaluates 
the intensity at that point and returns the intensity to the caller. The shader can 
be evaluated recursively to yield ray tracing style of rendering. Deposit performs 
the reciprocal operation to Collect. Deposit takes an incoming energy and direction, 
deposits some of the energy to the surface and reflects the rest of the energy to the 
outgoing directions based on the reflectance function of the surface. The function 
can be evaluated recursively to yield ''backward ray tracing" style of rendering 
[Arvo, 1986] to compute caustic effects by tracing rays from the light. 

Shaders are called when evaluating intensity or depositing energy is necessary. A 
typical scenario of shader invocation follows: 

• Determine the nearest entity at a sample on an image plane. This could be 
done via ray casting, z-buffer scan conversion, or some other method that is 
decided by the Scene class. Note that the image plane could be associated 
either with the eye or with a light in the case of backward ray tracing . 

• Load a Neighborhood object with relevant information by querying the Geom
etry object associated with the nearest entity. 
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Shader 
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Shader 
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Figure 2: The current implementation of the Shader class hierarchy 

• Pass the Neighborhood object to the Shader object associated with the near
est entity. Call the Collect method of the Shader if the intent is to compute 
reflected intensity or the Deposit method if the intent is to deposit energy on 
a surface. 

We have implemented some basic shading models such as Phong [Phong, 1975] 
and Blinn [Blinn, 1977]. Both tabular or procedural texture mapping can be ac
commodated with our shaders. We also have a recursive shader which basically 
implements a ray tracer. The current shader hierarchy is shown in Figure 2. 

We have developed an interpretive object-based language that allows users to write 
expressions to create shaders [Turner, 1991]. 

2.4 Scene 

The Scene class has two purposes. First, it bundles all the global information into 
an object accessible to any other object. The global information is briefly listed 
below: 

• Camera: the viewing parameters and transformation between, world and view 
space. 

• Buffer: the place to hold the resulting image. It could contain color, Z, or any 
other values that the renderer generates. 

• Renderables: the objects that comprise the scene. 

• Lights: the light sources illuminating the scene. The Light class has a virtual 
function GetIntensity, which returns the intensity of the light arriving at a 



www.manaraa.com

10. An Object-Oriented Testbed for Global Illumination 161 
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Figure 3: The current implementation of the Scene class hierarchy 

point in space. The Light also contains a Renderable, which allows the light 
to be visible. 

Second, it encapsulates the display architecture in it. Each Scene object has a 
virtual function Render. The Render function traverses all the Renderables and 
projects them onto the image plane. For each visible Renderable on the image plane, 
it calls the shader in the Renderable to collect or deposit energy. A derived class 
of Scene can override the Render function to implement different hidden surface 
or display methods. Figure 3 shows the current Scene class hierarchy. The ZScene 
class implements a z-buffer type method. The RayScene and RadScene classes en
capsulate the ray tracing and the progressive radiosity methods [Cohen et al., 1988] 
respectively. Note that since we already can implement a ray tracer in a shader, 
RayScene mainly refers to using ray casting to perform the visibility calculation 
(i.e., shooting rays from the eye to see which object is visible). Conversely, a ZScene 
can generate a ray- traced image by simply invoking a recursive ray tracing shader 
(i.e., this approach is similar to using item buffer preprocessing for ray tracing 
[Weghorst et al., 1984]). A multi-pass rendering approach [Chen et al., 1991] which 
combines ray tracing, caustics tracing and progressive radiosity was implemented 
in the MPScene class. 

We have implemented various renderers which perform z-buffer, ray tracing and 
radiosity using the testbed. A user of the renderer will simply need to set up a scene 
and call the Render method of the scene as demonstrated in the following C++ style 
pseudo code. 
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ARayTracer ( ) 
{ 

Scene* aRayScene = new RayScene; 
II construct the scene (camera, renderables, 
II lights, etc.) from a file 
aRayScene->Read(afile); 
aRayScene->Render(); 

The Render method of a typical ray tracer implemented in our testbed looks like 
the following: 

RayScene:Render() 
{ 

for each pixel in Buffer 
{ 

II find the nearst Renderable and Neighborhood 
construct a ray from the eye to the pixel; 
for each Renderable in the scene 

Renderable->Geometry->Intersect(ray); 
if Renderable is the nearest intersection so far 

nearestRenderable=Renderable; 
nearestNeighborhood=Renderable->Geometry->Neighborhood() 

II evaluate the intensity at the nearest intersection 
intensity = 

nearestRenderable->Shader->Collect(nearestNeighborhood); 
Buffer [pixel] = intensity; 

For a user who wants to implement a new renderer, s/he will need to derive from 
the Scene class or any ofits derived classes and override the Render method: 

ANewRenderer: public Scene() 

public: 
virtual void Render(); 

ANewRenderer::Render() 
{ 

II implement the renderer here 

Since the functionality to access the renderables, lights and image etc., is inherited 
in the derived classes, the user can concentrate on implementing the difference 
between the derived class and the base class. Similarly, we can create new Geometry 
or Shader classes by deriving and overriding. 
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Figure 4 shows an image created from our multi-pass renderer MPScene. The color 
bleeding, caustics, shadows, specular reflection and refraction effects in the image 
were computed in separate passes. The rendering process involved ray tracing from 
the light as well as from the eye. A radiosity pass was used to compute the radiosity 
of each surface and created a radiosity map for each of the surfaces. The radiosity 
maps provided an accurate approximation to the diffuse interreflection. They were 
used to replace the constant ambient term that most shading models use. A caustic 
pass was used to create a caustic map for each surface by tracing rays from the 
lights to the specular surface. The rays stopped at diffuse surface and deposited 
energy to the caustic maps. The final pass involved ray tracing from the eye to 
create an image. A special kind of shader which knows how to obtain radiosity and 
caustic from the maps was used to perform the final shading. Since MPScene was 
derived from RadScene and RayScene, the functions to shoot rays and compute 
radiosity were inherited. The following pseudo code shows the process. The same 
process was used to compute Figure 5, which shows a shadow of a stick created by 
a wall acting as a secondary light sources. Details about the multi- pass rendering 
can be found in [Chen et al., 1991]. 

MPScene::Render() 
{ 

II the radiosity pass: it computes a radiosity map for 
II each surface 
RadScene::Render() ; 

II caustic pass: it computes a caustic map for each surface by 
II shooting rays from the lights to specular surfaces. The rays 
II stop at diffuse surfaces 
for each light 

set camera at light; 
for each direction from the light to the scene 
{ 

find the nearestRenderable and 
nearestGeometry as in RayScene; 
nearestRenderable->Shader->Deposit(nearestNeighborhood); 

II ray tracing pass: it computes the final image 
II the shaders know how to get the caustic and radiosity 
II from the maps 
set camera at eye; 
RayScene::Render(); 

3 Conclusions and Future Directions 

We have presented a flexible rendering testbed designed for experimenting with 
global illumination algorithms. The testbed is composed of three basic classes: 
Geometry, Shader and Scene. They correspond to the basic components in most 
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renderers. By deriving and overriding the classes, different rendering components 
can be modified orthogonally. 

The main advantage of our testbed is that it allows fast prototyping of new ren
dering capabilities. For example, adding a new primitive to a renderer is usually 
considered a major task. In our testbed, it only requires overriding some functions 
in the Geometry class. The same is true for adding new shaders or display methods. 
The concept ofbi-directional shaders proves to be very useful in exploring different 
styles of rendering. 

We have both compiled and interpretive shaders. The compiled shaders are the basic 
nodes of hierarchical shaders that can be specified with an interpretive language. 
This approach gives us both flexibility and performance. Work is unde.cway to build 
a graphical shader editor and a shader library. Dynamic linking of the shaders is 
also desirable in the future. 

Further research is required to solve the problem of context sensitive shaders. Some 
shaders are context sensitive because they expect specific global scene data to exist 
in the scene(e.g., the spatial decomposition data for a ray tracing shader). This kind 
of shaders makes the scene and the shaders inter- dependent on each other. 

Currently, only parametrizable primitives are supported. More research is needed 
to integrate implicit surfaces to our testbed. 
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Figure 4: An image created with a mUlti-pass method that accounts for shadows, 
color bleeding, caustics, specular reflection and refraction [Chen et aI., 1991] 

Figure 5: Soft shadows created by indirect lighting 
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Sharing Between Graphical Objects 

Using Delegation 

D. Brookshire Conner and Andries van Dam 

We investigate the suitability of object-oriented paradigms for graphics by comparing a variety 
of object-oriented graphics systems and noting which of their features are readily modeled by 
class-instance systems and which by delegation systems. We examine how these systems 
establish patterns of sharing of data and behavior, and note that these patterns are established 
in a remarkably consistent fashion. We conclude that these patterns of sharing are more 
naturally modeled in a delegation system than in a class-instance system. 

1 Introduction 

The movement towards object-oriented programming has influenced all applica
tion areas, including 2D and 3D interactive graphics. While traditional graph
ics subroutine libraries are not object-oriented [GL manual, Howard et al., 1991, 
Upstill, 1990], newer graphical2D user-interface (GUI) toolkits are [Myers, 1989], 
and object-oriented 3D graphics libraries are emerging [Strauss and Carey, 1992]. 
While these toolkits and libraries use the class-instance model of object-oriented 
programming, our experience with our delegation-based interactive modeling and 
animation system [Zeleznik et al., 1991] has convinced us that the newer delegation 
model of object-oriented programming is better suited to the demands of interac
tive graphics. This paper provides a somewhat more formal demonstration of this 
conviction. 

This paper analyzes existing object-oriented graphics systems, showing that many 
features of graphics systems are more readily represented in a delegation model. 
We begin with a general description of the organization of most graphics sys
tems, then compare the class-instance paradigm with the delegation paradigm. 
We then present an abstract discussion of how objects can share information in 
object-oriented systems, noting the kinds of sharing graphics systems allow. This 
brings us to the heart of the paper, where we examine how several graphics sys
tems allow their objects to share information. We conclude by showing that sharing 
in object-oriented graphics has more characteristics in common with sharing in 
delegation systems than with sharing in class-instance systems. 
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2 The Generic Object-Oriented Graphics System 

2.1 What is "object-oriented"? 

Object-oriented literature is rarely precise about what makes something "object
oriented" and advertisements for "object-oriented" systems are even less so. We 
must therefore state what we mean by "object-oriented," especially in graphics, 
where the application domain includes many concrete "objects." Certainly, the mere 
existence of objects is not enough to constitute object-orientation. 

We see two key aspects as necessary to being object-oriented. The first is the abil
ity to define and create entities that encapsulate both data and behavior, typi
cally called "objects." By this definition, a C procedure is not an object, because 
it usually does not encapsulate data. A C struct is also not an object, because 
it does not encapsulate behavior. Lisp closures and Modula-2 or Ada modules do 
encapsulate both data and behavior, but do not fully provide the second aspect of 
object-orientation. This second and more important aspect is the ability to provide 
sharing of behavior and data between entities. This sort of sharing is usually called 
inheritance. Our two-part definition is broader than some [Wegner, 1987], in not 
requiring classes, since we would like to include paradigms such as delegation and 
actor-based paradigms that are ruled out by stricter definitions. 

Let us examine the second aspect of object-orientation, inheritance, a little more 
closely. The discussion must remain somewhat abstract - a more concrete example 
might use ideas unique to a particular object-oriented paradigm. We would like to 
avoid such prejudices, since the primary goal of this paperis to objectively determine 
what object-oriented paradigm is best suited to computer graphics. 

Consider two objects, A and B. If B is sent the message m, B may draw on its own 
resources (e.g., code or data) to respond to m, or it may draw on the resources of 
another object, such as A. If B were to use A's resources, A and B would be sharing 
some part of the response to m. B can be said to inherit some of its response to 
m from A. This sharing can occur to greater or lesser degrees. B might use A's 
resources exclusively. Alternatively, it might use some of A's and some of its own. 
For example, A's response to m might be to send the message n to the original 
recipient of m (usually itself). B might not share n with A. Thus, sending m to B 
would enact B's response to n, and sending m to A would enact A's response to n. 

We can thus see how within a system, there can be degrees of object-orientation, 
depending on the extent to which objects and inheritance are supported by a sys
tem. Some parts of a system may provide better support than others - a particular 
object-oriented system could be very object-oriented in one part of the system, and 
only barely object-oriented in another part. For example, in a graphics system, just 
having primitives is not enough. PHIGS+ is clearly not object-oriented with re
spect to its drawing primitives: they are not objects because they don't encapsulate 
both data and behavior, although PHIGS+ structures do encapsulate data in the 
form of geometry and attributes within structures, and attributes can be inherited 
from a parent structure by a child [Gaskins, 1992]. The Dore system [Dore, 1992] is 
somewhat object-oriented - the programmer can add new primitives, but the im
plementation of new primitives cannot be shared with earlier ones (i.e., inherited). 
The Inventor system is clearly object-oriented in its provisions for drawing primi
tives [Strauss and Carey, 1992], since the programmer can provide a new node type 
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by subclassing from any pre-existing node type and choosing to share all or some 
part of the pre-existing node's behavior. 

2.2 Components of Graphics Systems 

Let's now examine common components of a generic object-oriented graphics sys
tem. These components give us a starting point for comparisons of actual systems. 
For simplicity, we include both application-side and device-side portions of a graph
ics system. In the future, we intend to investigate this boundary in closer detail, 
looking at what features are supported on the device side and in the implementa
tion language, and what features are utilized on the application side provided by 
the graphics system, and how extensibility relates to both sides. 

Most graphics systems provide support for two hierarchies, a class hierarchy and a 
directed acyclic graph (DAG) of instances of the classes in the class hierarchy (this 
is often called a part hierarchy, although it is often used for more than just part
subpart relationships, as will be discussed later.) The class hierarchy is typically 
used to support sharing of code, whereas the DAG is usually used to support sharing 
of attributes. Most often, the class hierarchy is a static code construct provided by 
the graphics system and is usually extended only at compile time. The DAG, on the 
other hand, is a more dynamic construct that is almost always built at run time. 

The class hierarchy 

The class hierarchy in a graphics system typically provides modeling primitives 
such as geometric objects like rectangles, polygons, polyhedra, quadrics, and spline 
patches. Systems that emphasize interaction (such as most 2D systems) provide 
interaction tools such as pulldown menus, text fields, and scroll bars. The class 
hierarchy is always a taxonometric hierarchy, in which items near the top are 
more general kinds of objects and items lower in the hierarchy more specialized. 
This hierarchy is used to share implementation, which is especially important in 
graphics, since many fundamental operations, e.g. clipping, scan-conversion, and 
shading, can be difficult to implement correctly. In addition, the class hierarchy pro
vides some measure of procedural abstraction, since common actions, like drawing 
a primitive or performing a pick test, are provided as abstract methods of a base 
class. 

The DAG 

The runtime DAG implements the scene hierarchy, the collection of objects that 
comprise the model that the programmer is representing or that the interactive 
end-user is constructing. It is built from objects instanced from the classes in the 
class hierarchy. As a DAG, it implements Sutherland's master-instance hierar
chy [Sutherland, 1963], In 2D systems, especially ones for user interfaces, this 
hierarchy is usually a conceptual hierarchy of controls and feedback, with concep
tually related controls grouped into a subhierarchy. In 3D systems, which tend to 
be geared more towards geometric modeling, the hierarchy usually represents a 
parts breakdown of the model. 

A few systems provide multiple DAGs, allowing different DAGs to specify different 
attributes. For a model of a building, say, one DAG can represent the building on 
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a floor-by-floor basis, one the plumbing, and one the electrical system. Objects in 
more than one DAG, such as a faucet on a particular floor, would inherit attributes 
from both DAGs. Some systems provide mechanisms to accomplish some of the 
same things that multiple DAGs would do. The PHIGS+ name set mechanism can 
be used to specify pickability, highlightability, and visibility. By using filters on the 
name set, these special attributes can be set as if they were attributes in their own 
DAG and represented a different hierarchy from the parts hierarchy in the Central 
Structure Store DAG. 

The DAG provides several additional features. If a single instance is referenced 
several times, i.e., there is more than one path from the root to a particular instance, 
then one instance is in effect being used several times, perhaps in several contexts. 
In addition, the DAG can factor out commonality. Since graphical attributes are 
usually propagated along the edges of the DAG, i.e. from parent to child, setting 
attributes high in the graph effectively sets the attributes for the entire subgraph. 
This operation bears a striking similarity to inheritance in the class hierarchy, 
where changing a method high in the class tree potentially affects classes in the 
entire subtree. 

Similarity of the DAG and the class hierarchy 

A further similarity between the DAG and the class hierarchy can be found in their 
purposes. These two hierarchies are meant to accomplish two distinctly different 
tasks: the class hierarchy provides a taxonomy of the kinds of objects available 
in the system, and the DAG provides a parts-subparts breakdown of the run-time 
application model. However, in practice, the separation is usually far from orthogo
nal. Graphics systems are often used for interactive applications, such as drawing 
programs or CAD/CAM systems, in which the user is incrementally building or 
modifying an object. Users naturally want to try several variations, perhaps by 
building a rough model, for example, a simple automobile, then refining several 
different copies, so as to produce cars with different headlights or fenders. Thus, 
the DAG is often used to model a taxonometric hierarchy, even though that is not 
its purpose. 

Thus, we see two different hierarchies designed with two different purposes in 
mind, but with distinctions not as precise as we might have thought. A dele
gation system, being well-suited to exploratory programming [Stein et aI., 1989, 
Ungar and Smith, 1987, Ungar and Smith, 1991], is also well-suited to the taxono
metric-like characteristics of the DAG. The remainder of the paper will investigate 
the inheritance and sharing found in the DAG and show that a delegation model 
better represents both the dynamic taxonomy and run-time sharing found in graph
ics than a traditional class-instance model. 

3 Two Models for Object-Orientation 

There are two predominant paradigms for objects in object-oriented program
ming: the class-instance paradigm and the delegation paradigm [Borning, 1986, 
Halperin and Nguyen, 1987, Wegner, 1987]. In a class-instance system, all objects 
are instances of a class. Classes can inherit from other classes. When an object is 
sent a message, the method used to respond to that message is the version of the 



www.manaraa.com

11. Sharing Between Graphical Objects Using Delegation 177 

message in the object's class. If the class does not contain a suitable method, then 
the method used is the one in the nearest superclass. A search for a method can 
either be done at runtime, as in SMALLTALK, which, in principle, actually searches 
through runtime class objects, or at compile time, as in C++, which builds up a 
table of function pointers, producing a single table index at runtime instead of a 
complete search. Thus, there are two relationships, that between an object and its 
class and that between a class and any class it inherits from. The classic example 
of a class-based language is SMALL TALK. In contrast, delegation systems, such as 
SELF have only one relationship [Ungar and Smith, 1991] between an object and 
any object it inherits from. In a delegation system, when an object receives a mes
sage, it looks for a method in itself rather than in its class. Ifno suitable method is 
present, the search continues recursively in objects, called parents, that this object 
inherits from. 

3.1 Which to Choose? 

The tradeoffs between a class-instance system and a delegation system are the 
subject of some debate. In general, delegation is seen as being more suited to 
exploratory, developmental programming, whereas class-instance systems seem to 
provide better support for guaranteed reliability. 

Pros of delegation 

In particular, delegation systems are seen as more flexible and easier to learn 
[Borning, 1986]. A delegation model is a strict superset of class-instance models, 
since delegation can model class-instance relations but classes and instances cannot 
model delegation without additional constructs [Halperin and Nguyen, 1987]. This 
makes delegation systems more flexible, in that the programmer is not bound to the 
class-instance paradigm and can use more open-ended constructs, and this greater 
flexibility makes some problems simpler to model. Two such problems are unique 
instances and extended instances. With a unique instance, only a single example of 
a particular object exists, like the proverbial perfect cup of tea. Defining a second 
class object to correspond to this unique object is clumsy. Extended instances are a 
related problem. A group of objects has similar behavior, but one or two instances 
support behavior the others don't, like Dumbo, the elephant who could fly. Making 
a completely unrelated object is inappropriate, since Dumbo is still an elephant. 
However, a normal class-instance system does not provide support for the possibility 
that Dumbo can fly, unless Dumbo is an instance of the new class offlying elephants. 

Eliminating classes also makes delegation systems simpler in two ways. First, 
the confusing construct of metaclasses is seen as the hardest part of SMALLTALK to 
learn [O'Shea, 1986], and delegation systems have no need for metaclasses. Since all 
objects must be instances of a class in a class-instance system, systems that support 
classes as runtime objects, as SMALLTALK does, must have objects for classes to be 
instances of, hence metaclasses. However, what class are metaclasses instances of? 
Note that not all class-instance systems suffer from this problem of infinite regress: 
any system that does not support classes as runtime objects, such as C++, does not 
run into this problem. 

Delegation paradigms also simplify the possible relationships between objects. 
Class-instance systems have two object relations, that between a class and a derived 
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class and that between a class and an instance of the class. Delegation systems, 
however, have only one relationship, that between an object and its parent. Users 
of a delegation system thus have fewer concepts to learn with a delegation system. 

Perhaps the most compelling reasons for using a delegation paradigm arise when 
delegation is examined in the context of graphics, as we are doing in this paper. 
A delegation system is an inherently exploratory world, amenable to easy, flexible, 
incremental modification and creation, filled with actual concrete objects, not ab
stractions. An interactive graphics program is, ideally, similarly easy and flexible, 
with easily created and modified concrete objects. Indeed, we believe future graph
ics applications will provide progressively more flexible and modifiable objects, 
allowing modification of what is typically thought of as the object's "type" (such as 
whether it is a sphere or cone) [Zeleznik et aI., 1991]. Historically, this approach to 
graphical programs has been around as long as there have been interactive graph
ical programs [Sutherland, 1963]. Users of drawing programs do not think of the 
objects they manipulate as instances of abstract categories, whose parameters they 
are modifying. Users see the objects they manipulate as independent objects, an 
approach that is much closer in feel to delegation than to class-instance paradigms. 

Cons of delegation 

On the other hand, delegation systems have some distinct disadvantages. They 
tend to produce even more message sends than traditional class-instance rela
tions, in part because delegation's greater flexibility seems to preclude some ob
vious compiler optimizations (such as flattening the inheritance hierarchy for 
a particular object to eliminate method searches). However, the SELF compiler 
seems to tackle this problem remarkably well, reportedly performing better than 
SMALLTALK and comparably to optimized C code, at least for integer computa
tion [Chambers, 1992, Chambers and Ungar, 1991]. A second drawback is that the 
objects in a delegation system are even more concrete than instances in a class
instance system, so that delegation becomes somewhat unnatural for inherently 
abstract entities like integers. For example, what is the prototypical integer? Zero, 
one, and infinity all seem likely candidates, but their behavior is far too specialized. 
However, graphics applications are inherently concrete, since, by definition, they 
want to show their objects. 

Finally, the greater flexibility of delegation systems is very much a double-edged 
sword - the same flexibility that makes rapid prototyping possible makes it easy to 
change the wrong thing inadvertently. This touches directly on an old and vehement 
programming language battle: flexibility versus security. For large projects, security 
becomes extremely important. In programming languages, more flexible constructs 
are often seen as encouraging poor code structuring (e.g., the well-known goto 
versus while, repeat, for debate). 

However, the flexibility provided by delegation systems is exactly the kind of flex
ibility that most object-oriented graphics systems try to support, as the analysis 
in Section 5 demonstrates. Previous analyses of delegation for graphics also sug
gest that delegation is more suited for graphics [Borning, 1986, Wisskirchen, 1990]. 
Wisskirchen goes so far as to provide a short example [Wisskirchen, 1990] and point 
out that it is "simpler and more natural to program." He did not pursue this di
rection, however, choosing instead to base his GEO++ system on a class-instance 
system because it is "in wider use and has been more strongly standardized." 
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In what follows, we provide additional arguments in favor of delegation by analyzing 
how existing graphics systems share information (e.g., attributes). We survey a 
variety of object-oriented graphics systems and show that the sharing inherent 
in a delegation system can handle the capabilities graphics systems provide more 
readily than a class-instance system can. 

4 Sharing 

A series of concrete examples can give a straight-forward demonstration of a sys
tem's capabilities. However, careful choice of the examples can make the worst 
systems look good and the best systems look bad. We thus begin with an abstract 
description of sharing in object-oriented systems. We use this abstract basis as a 
framework to describe the general abilities of a variety of graphics systems. Due to 
space limitations, we will not be able to discuss all aspects ofthe abstract framework 
in relation to all aspects of graphics systems. 

4.1 An Abstract Description of Sharing 

We frame our discussion in terms of the Treaty of Orlando [Stein et aI., 1989], 
which discusses how objects share information in object-oriented languages. In 
particular, what are the patterns of this sharing and how is it established? This is a 
very generic approach, designed to avoid language-centric questions by specifically 
avoiding terms or structures in any particular language or paradigm. 

Points to consider about mechanisms supporting sharing include the following: 

• How is sharing established? 

implicit Sharing is a mechanism provided by the system and applied uni
formly for all objects. 

explicit Sharing is an operation allowing the programmer to control the 
patterns of sharing. 

• When is sharing established? 

static Sharing is established at or before object creation and cannot be changed 
thereafter. 

dynamic Sharing is established at any time and can be changed at any time. 

• For what objects is sharing established? 

per group Sharing is established for a group of objects all at once (e.g., using 
a class to establish sharing among all its instances). 

per object Sharing is established on an object-by-object basis. Individual 
objects can thus have idiosyncratic behavior. 

Patterns of sharing, i.e. how inheritance or delegation is established between ob
jects, comprise half of the difference between class-instance models and delegation 
models. To avoid any confusion, we call this form of sharing, in which objects borrow 
information from each other, empathy [Stein et aI., 1989] rather than inheritance, 
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which could refer to a particular language construct. Different choices about how 
the patterns of empathy work yield different object models. Class-instance sys
tems typically provide a form of empathy that is static, implicit, and per-group: 
static, since the class tree usually doesn't change; implicit, since sharing between 
instances and between classes is automatically provided as a uniform feature by 
the system; and per-group, since sharing is specified for all instances of a class at 
once. Delegation systems are usually dynamic, either implicit or explicit, and per
object: dynamic, since delegation relations between objects are typically allowed 
to change; implicit in systems like SELF and explicit in systems like Actors; and 
per-object, since each object has its own parent slot. 

The other half of the difference between class-instance systems and delegation 
systems deals with templating: how new objects are made (as opposed to empa
thy, which concerns how existing objects borrow information from other objects). 
Class-instance systems embed a template for an object within a class. This tem
plate produces objects with instance variables and a pointer to the object's class. 
Delegation systems such as Actors have no templates - objects are made anew ev
ery time, while delegation systems such as SELF allow any object to be a template 
- objects are made by copying other objects. Note that different systems share 
different information during templating. In most class-instance systems, there is a 
sharp line between what is shared by all instances of a class (i.e., the methods) and 
what is not (i.e., the instance variables). In systems like SELF, a new object doesn't 
share any information with its template since the new object is a copy of the old 
one. 

4.2 Empathy in Graphics 

In graphics, objects share information in an empathic fashion through both the 
class hierarchy and through the run-time DAG, sharing code using the class hi
erarchy, sharing attributes through the DAG. As noted in Section 2, attributes 
such as surface properties, geometric transformations, and geometry are usually 
propagated along the edges of the DAG. Although most graphics systems use the 
equivalent of a DAG structure, empathic sharing of attributes is done by a variety 
of mechanisms. Each graphics system accomplishes this sharing in its own way and 
calls the mechanisms involved by different names. Learning a new graphics system 
thus means learning a new way of doing things, so that most graphics systems have 
steep learning curves. 

Sharing, as realized both by empathy and by templating, can be used to greater or 
lesser extents for many different aspects of an object, including an object's protocol 
(what messages it understands), an object's implementation (how it responds to 
messages), and an object's data. We focus on sharing in general, without worrying 
about exactly which graphical attributes, objects, and methods are 'shared through 
empathy, and which through templating, since in general, no two systems support 
exactly the same kinds ofinformation as either attributes or objects. Certainly, there 
are differences between 2D and 3D systems. However, we are concerned here with 
how objects share information, regardless of exactly the kinds of objects supported 
by a particular system. 

In the next section, we will analyze how graphics systems use sharing. As noted 
before, it is not feasible to cover all aspects of sharing in a paper this size, especially 
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for the number of graphics systems discussed. We will instead focus on a particular 
part of the graphics system, the application's model of the system (i.e., how the 
application programmer thinks of the graphics system), and a particular kind of 
sharing, namely empathy. It could also be fruitful to consider internals of graphics 
systems, either at the device driver or graphics library level. Alternatively, one 
could investigate the ramifications of how templating is performed in graphics sys
tems. Thus, we can consider a simple space of topics for analysis of object-oriented 
graphics systems: the two kinds of sharing along one axis, and the various layers 
of implementation and abstraction of the graphics system along the other axis. In 
such a space, this paper remains in "empathy for application abstractions" corner. 
Future papers might investigate other regions of this space, and the effects of kinds 
of object-orientation on topics such as performance, reliability, and extensibility. 

5 Analysis of Existing Object-Oriented Graphics Systems 

Here we survey some well-known graphics systems (the X Toolkit, and PHIGS+) and 
a variety of systems that call themselves "object-oriented," giving a brief description 
of how each establishes empathic sharing of information between objects. We first 
discuss systems that perform templating using more traditional class-instance-like 
mechanism and then systems that use the more unusual prototype mechanism 
found in most delegation systems. While we don't otherwise analyze these systems 
with respect to templating, this categorization serves to provide an overview of the 
general approaches involved. A summary of the following discussion may be found 
in Table 1 at the end of the section. 

5.1 Class-Instance Systems 

The X Toolkit 

The X Toolkit is an object-oriented system implemented in C that provides a frame
work for toolkits of interaction techniques [Myers, 1989, Nye and O'Reilly, 1990] 
(It does not provide the interaction techniques themselves, merely the framework 
to implement them). For example, the OSFlMotif Toolkit is implemented on top of 
the X Toolkit [Heller, 1991]. Since it is freely distributed with the X Window Sys
tem, the X Toolkit is quite widespread, and has had a large influence on other 2D 
graphics systems. 

Instances in the X Toolkit called widgets are arranged in a strict tree (in contrast 
to many other graphics systems that, as noted in Section 2, allow instances to be 
arranged in a DAG). Parents can be established only when a widget is created
a widget cannot be moved around in the hierarchy, but must instead be destroyed 
and recreated. 

A widget's attributes are termed resources, and particular classes of widgets sup
port different resources. For example, scrollbars support attributes related to the 
appearance of the thumb ofthe scrollbar, attributes that would be meaningless for 
pushbuttons. If a resource is set on or requested from a widget that is inappropriate, 
it is ignored. If a widget has no specified value for a resource, it gets the value from 
its parent in the instance hierarchy, although most widget classes provide default 
values. 
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Sharing is thus static, since there is no reparenting, implicit, since it is established 
by the parent-child relationship, and per-object, since different widgets have differ
ent parent widgets and thus inherit resource values differently, even if the widgets 
are instances of the same class. 

InterViews 

The InterViews toolkit has a similar functionality to the X Toolkit along with a 
widget set (such as Motif). It is, however, written in C++, making it cleaner, since 
it need not implement mechanisms to support the class hierarchy and instancing 
from it [Linton et al., 1989]. In addition, it tends to have higher-level classes (e.g., 
tree viewer vs. drawing area) than an X Toolkit widget set. 

In addition to objects equivalent to X Toolkit widgets, which InterViews calls in
teractors, InterViews supports objects called glyphs, lighter-weight, more dynamic 
versions of interactors [Calder and Linton, 1990]. Unlike interactors, glyphs can 
be shared among several parent glyphs or interactors. Thus, unlike the X Toolkit, 
InterViews sharing is dynamic, since the parent-child relationships for glyphs can 
change. Other than glyphs, however, sharing is quite similar, being implicitly es
tablished by parent-child relationships and different on a per-object basis. 

PHIGS+ 

PHIGS+ is a graphics system to perform 3D rendering at interactive speeds with 
rudimentary interaction techniques [Howard et al., 1991, Gaskins, 1992], but it is 
not an object-oriented graphics system. It does not provide the ability to make new 
classes of objects. However, it is a standard graphics system, and, because of its 
age and widespread availability, has widely influenced the design of subsequent 
graphics systems. 

Like most graphics systems, PHIGS+ provides a run-time DAG hierarchy. Indeed, 
the PHIGS+ DAG is the exemplar for 3D graphics systems. Many systems use du
plication of a PHIGS+ hierarchy as an example of how useful the system is. In terms 
of the DAG, many systems do not provide much more functionality than PHIGS+. 
However, the PHIGS+ equivalent of a class hierarchy is merely a subroutine library 
with calls to create a variety of primitives. Thus, users cannot extend the system 
with new primitive types. 

The PHIGS+ model provides structures containing ordered primitives, attributes, 
and references to substructures. Attributes inserted into a structure before a prim
itive affect the primitive's rendering, and structures inherit or share attributes 
with their parent. Attributes set in the parent structure (before the child) have the 
same effects as if they had been specified at the beginning of the child structure. 
The PHIGS+ name set, as discussed in Section 2.2, is an exception to the attribute 
sharing provided by the DAG. ' 

Sharing in PHIGS+ is dynamic, since one can move structures around, removing 
them from one parent structure and placing them in another, or reference them 
several times. Attribute sharing is implicitly provided by order in the structure 
and the parent/child relationship between structures, again with the exception of 
the name set mechanism. Finally, sharing is per-object, since each structure has a 
different parent. 
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Mirage 

Mirage is a system for building interactive 3D applications that makes use of both 
object-oriented programming and knowledge representation techniques [Tarlton 
and Tarlton, 1989, Tarlton and Tarlton, 1992]. It provides three major class hierar
chies, Forms, Activities, and Events, to model geometry, time-dependent behavior, 
and interactivity, respectively. 

Hierarchical arrangement of instances of Form and its subclasses provides a run
time hierarchy quite similar to the PHIGS+ DAG, except for two significant differ
ences. First, Mirage hierarchies are strictly trees, not DAGs, in order to prevent 
ambiguities when cameras are multiply instanced. Second, order of attributes set 
on Forms is not important, so that using Forms is a more declarative style of mod
eling than found in PHIGS+. Like structures in a PHIGS+ hierarchy, instances of 
Forms inherit attributes set on their parent. Instances of Activities can be hierar
chically composed, much like Forms, and attributes such as duration and speed are 
inherited. Events are handled in a somewhat different manner, since Events, being 
inherently discrete, are not hierarchically composed. 

Sharing is dynamic, since the hierarchy of either Forms or Activities can be changed. 
These hierarchies provide an implicit and per-object sharing of their attributes. 

Inventor 

The Inventor system from Silicon Graphics is a system for building interactive 3D 
graphics applications [IRIS, Strauss and Carey, 1992]. As a C++ class library, it can 
be extended rather easily, although supporting some features in a new class, such 
as automatic file I/O, requires a fair amount of work, as C++ does not support these 
features especially well. 

Subclasses ofthe base class SoN ode provide modeling primitives, including spheres, 
patches, various attributes, and grouping primitives. Subclasses of SoNode also 
include interactive objects called manipulators that can be used to move and resize 
objects and control lights and cameras. Grouping primitives arrange SoNodes into 
the familiar DAG. As in PHIGS+, both order of nodes that specify attributes and 
attributes specified in parent nodes are relevant. Attribute values are changed 
either by editing nodes or by changing the execution DAG, e.g., moving, adding, or 
removing nodes. This can be done at runtime. 

Inventor also provides classes to perform actions on the entire DAG, build supple
mentary 2D interfaces, and handle user events. It is also straightforward for one 
portion of the DAG to monitor changes in another portion, making it relatively easy 
to implement simple constraints. 

Sharing of attributes is dynamic, because the DAG can change, and implicitly 
provided by order and grouping. Like other graphics systems, sharing'is also per
object, being unrelated to an object's class. 

GEO++ 

The GEO++ system is quite similar to PHIGS+, although it is implemented in 
SMALLTALK [Wisskirchen, 1990]. Like Mirage it limits its hierarchies to strict trees. 
In GEO++ terminology, Groups contain Parts. A Part can be another group or an 
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output primitive. Attributes can be set anywhere along the tree, and propagate 
down the hierarchy in a manner quite similar to PHIGS+. Thus, like PHIGS+, 
GEO++ is a dynamic, implicit,per-object environment. 

TBAG 

TBAG is a somewhat different system that uses functional programming to pro
vide interactive 3D applications [Elliott et al., 1991, Elliott, 1992], and thus it has 
a unique approach to modeling. The class hierarchy here serves as data types that 
functions can operate on. Rather than a runtime DAG, TBAG programmers write 
functions that return geometric objects. Composing functions provides hierarchi
cal models. True to the functional programming tradition, rather than modifYing 
models passed into them, TBAG functions return completely new objects. 

Sharing is therefore static, since functional composition is not changed at runtime. 
Note that conditionals within a function do not change this, since a conditional 
function returns a static object. Functional composition is also an implicit means 
to share information between objects. TBAG functions are generic, operating uni
formly on geometric objects regardless of their actual class, making sharing per
object. 

5.2 Delegation-Based Systems 

Delegation-based programming languages are not as widespread or standardized 
as class-based languages. Most class-instance systems discussed use an existing 
class-instance programming language, usually C++. The two delegation systems 
described below use two non-object-oriented programming languages (C and Lisp) 
and implement their own delegation systems. 

Garnet 

The GARNET system from Carnegie Mellon University is designed to build highly 
interactive 2D interfaces [Myers et al., 1990]. GARNET's fundamental object model, 
KR, is very similar to SELF's. There are objects called schemata, and slots which 
contain values (e.g., other schemata and Lisp atomic types) [Guise, 1989]. Sending 
a message to a schema looks for the slot with the same name. A special: IS-A slot 
acts as a parent slot - searching for a slot continues in the parent schema if the slot 
is not found in the child. Formulas are one-way constraints that can be established 
between schemata. 

GARNET's basic support for graphical objects is found in the Opal package [Per
vin et al., 1990]. Packages built on top of Opal provide interactive behavior and 
more sophisticated grouping abilities. We focus on Opal and KR, since the higher
level packages do not significantly affect GARNET objects' ability to share informa
tion. In some ways, GARNET's sharing abilities are more limited than SELF's, since 
GARNET disallows multiple inheritance. However, the presence of constraints at a 
fundamental level, even one-way constraints, provides an even greater flexibility, 
giving GARNET the ability to explicitly share attributes. As a SELF-like delegation 
system, it of course provides per-object sharing. Although its hierarchy is a strict 
tree, it does allow subtrees to be moved around, providing dynamic sharing. 
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UGA 

The UGA system, developed at Brown University, is designed to build interactive 
3D animations [Zeleznik et aI., 1991]. In UGA, objects are described in the scripting 
language FLESH and can have their attributes set by time-varying functions called 
chops (for change operation). These "attributes" include normal graphics attributes, 
such as geometry and surface properties, as well as more sophisticated attributes, 
such as dynamic properties like inertia and velocity. Responses to user actions can 
also be specified as an attribute. One particular attribute is a parent object. The 
initial value for an attribute is the object's parent's value for that object, with a 
default for objects without parents. When an object is asked for an attribute, its 
chops can affect the value obtained from the parent. Thus, parent chops provide a 
basic delegation mechanism within FLESH. 

An additional attribute is a members list for objects that represent groups. Objects 
can be members of and inherit attributes from multiple groups, allowing a flexi
ble combination of attribute organization. In addition, one-way constraints called 
dependencies provide another mechanism to share attribute values. Dependencies 
allow an object to explicitly choose which attributes to inherit, rather than inherit
ing all attributes, as with a group or a parent. 

Sharing in UGA is dynamic, since group member lists and parents are both at
tributes, and can thus change. It is implicitly provided by parents and groups, but 
explicitly provided by dependencies, in both cases on a per-object basis. 

5.3 Constraints 

Constraints are a way to add explicit sharing controls to an otherwise implicit sys
tem, as we have seen in both UGA and GARNET. If one object depends on another (a 
one-way constraint), the two objects are sharing information. However, constraints 
are usually between particular fields of an object, especially in a user interface, 
where objects lay themselves out by lining up their boundaries with one another. 
Since the constraints thus apply to individual attributes, it becomes an explicit 
sharing, rather than the implicit sharing of inheritance, which specifies that all 
parts of an object are shared at once. 

Multiway constraints entail sharing of data that is smart enough to know how to 
modify itself to maintain a constraint when one or the other of the constrained 
objects tries to assign a value to the constraint. Both the constrained objects share 
the constrained values. This is a local constraint-satisfaction technique, and it easily 
falls into local minima. This gets a bit messier with a global constraint system, 
where, in some sense, all objects that are constrained are sharing information 
together. 

Inheritance can be understood and implemented as a one-way constralnt [Borning, 
1986]. The child object is constrained to support some of the same things as the 
parent, e.g., slot names, behavior, and protocol. This approach works to some extent, 
but constraints, being a declarative construct, have more of a static feel than a 
dynamic one, although certainly constraint systems commonly allow constraints to 
be changed, added, and removed. 

GARNET and UGA provide one-way constraints as a system primitive. Inventor 
provides easy ways to write code that implements one-way constraints through 
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the use of Sensor objects that perform a callback when a particular piece of data 
changes. Finally, function composition in TBAG provides the equivalent of a one
way constraint. Objects returned by functions effectively depend on the argument 
objects passed into the function. 

System Language When How For 
Class-Instance Systems: 

X Toolkit C static implicit per object 
InterViews C++ dynamic implicit per object 
PHIGS+ C dynamic implicit per object 
Mirage C++ dynamic implicit per object 
Inventor C++ dynamic implicit per object 
GEO++ SMALLTALK dynamic implicit per object 

Functional Systems: 
TBAG C++ static implicit per object 

Delegation Systems: 
UGA C/FLESH dynamic explicit per object 
GARNET Lisp/KR dynamic explicit per object 

Table 1 : Object-oriented graphics systems, the paradigms they use, and the kind 
of sharing they provide. Note that all provide sharing of graphics attributes that is 
per-object. Most use dynamic, implicit sharing, derived from notions of PHIGS-like 
hierarchy. Systems that support constraints support explicit sharing. 

6 Implications for Object-Oriented Graphics 

6.1 Observations 

From our analysis in Section 5, we can make several observations. First, we can note 
some features of the problems graphics systems are trying to solve, and the ways 
they try to solve them. Interactive graphics applications are flexible, exploratory 
kinds of environments, and graphics systems are designed to support this - almost 
all systems allowed editing of the models they built, and most built these models 
in a hierarchy allowing sweeping changes in the objects. A few systems, such as 
PHIGS+, Inventor, and UGA, made use of ordering as well as hierarchy, providing 
an additional mechanism to specify and modify models. 

We can also discuss how these systems share information among objects, irrespec
tive of their intended application. For example, all systems, without exception, 
support per-object sharing. The class of an object only specifies default attribute 
values, never where an object obtains attribute values. Further, almost all systems 
have exactly the same kinds of sharing: dynamic, implicit, and per-object. This kind 
of sharing supports flexible, exploratory environments [Stein et aI., 1989], which 
should come as no surprise, considering the flexibility required by an interactive 
graphics application. The addition of explicit sharing in systems supporting con
straints only increases the flexibility of the system. 
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A little thought can explain why the systems that are not classified as dynamic, 
implicit, and per object are different. The X Toolkit is a static system because 
the fundamental X object (the X Window) doesn't allow reparenting without a 
great deal of effort. Other systems implemented on top of X, such as InterViews, 
circumvent this by not having X Windows and objects in the DAG in a one-to-one 
correspondence. TBAG is static because it is functional. Rather than editing an 
object, functions take graphical objects and return new ones. Since the functions 
can be arbitrarily complex, this does not limit TBAG's abilities - TBAG simply 
chooses that geometry and attributes should be treated in as formal a fashion as 
entities like integers or floating point numbers. 

Most of the graphics systems covered were implemented in a class-instance lan
guage, C++. Such a language supports static, implicit,per-group sharing - orthog
onal to the kind of sharing provided by the graphics system itself. A few systems 
weren't even implemented in an object-oriented programming language. Clearly, 
graphics systems are not making extensive use ofthe sharing provided by the pro
gramming languages they are implemented in. This is not because they are badly 
implemented - most of the C++ systems make extensive use of C++'s classing 
mechanisms in the class hierarchy. Rather, it is because the operations required by 
a graphics system, nanlely dynamically building individual objects, is not supported 
by a class-instance paradigm. 

6.2 Object-Oriented Graphics is Not Re-using Code 

Thus, every graphics system implements its own method of sharing, in its own par
ticular fashion. Each system is idiosyncratic in particular details, even though, as 
we have seen, all systems are trying to provide remarkably similar and consistent 
ways for objects to share information. This seems to contradict one of the fundamen
tal strengths of object-oriented programming, namely the ability to share code when 
the functionality required is similar. So why are graphics programmers using object
oriented programming languages that don't provide the kind of sharing interactive 
graphics needs? The most compelling answer we can come up with is Wisskirchen's: 
class-instance models are simply more standard [Wisskirchen, 1990]. 

While most graphics systems provide implicit sharing, certain examples indicate 
that explicit sharing is more suitable. Constraints are an example of explicit shar
ing. Since common programming languages do not provide the kinds of sharing 
graphics programmers need, we feel that the graphics community should begin to 
advocate programming languages that do provide this sharing, lest we continue to 
reimplement the dynamic environments needed for graphics. 

6.3 Delegation is Better for Graphics 

From our analysis in Section 5, it is clear that a delegation system models the shar
ing required by graphics systems better than a class-instance system. In addition, 
delegation models common problems in graphics, such as unique instances, better 
than classes, and appears to simply produce cleaner solutions to graphics problems 
in general, providing more concrete objects that map more cleanly to the inherently 
concrete objects of graphics [Borning, 1986, Wisskirchen, 1990]. 
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Arguments against delegation are being weakened by current research, such as 
the supposition that delegation is inherently inefficient when the SELF compiler 
indicates that this may not be the case. Other arguments against delegation, while 
weaknesses in one problem domain, are strengths in graphics. Delegation's inher
ent flexibility, while perhaps inappropriate for situations requiring guaranteed be
havior, is especially important for graphics. Delegation's objects are more concrete, 
making them less appropriate for abstract entities, but even more appropriate for 
the concrete, visible objects of graphics. 

We wish to investigate delegation and its applicability further, and feel that other 
researchers working on object-oriented graphics systems should consider delegation 
as well. Delegation is a general and powerful mechanism well-suited to the problems 
of graphics. 

7 Future Work 

As noted before, this paper analyzes a particular area in the space of sharing as 
it appears in graphics systems. Further analysis of this space can proceed in two 
fruitful ways. First, this work can benefit from analysis of additional graphics sys
tems, and in greater depth than allowed in a paper of this length. Second, analysis 
should be performed on additional areas of the space of sharing in graphics systems. 
How is templating used and/or implemented across graphics systems? How is tem
plating and empathy used and implemented in various parts of graphics systems? 
Is sharing affected by where the boundary between internal representation and 
external abstraction falls? These and other questions would provide a deeper, more 
rigorous understanding of graphics, a field that has traditionally been too much a 
"hacker's" domain. 

Acknowledgments 

This work was supported in part by NSFIDARPA, mM, Sun Microsystems, NCR, 
Hewlett Packard and Digital Equipment Corporation. The authors would also like 
to thank Carl Bass and Wm LeIer of Ithaca Software and Conal Elliot of Sun 
Microsystems for helpful discussions about this paper. 

References 

Borning, A. H. (1986). Classes versus prototypes in object-oriented languages. In 
IEEE / ACM Fall Joint Computer Conference, pages 36-40. 

Calder, P. R. and Linton, M. A. (1990). Glyphs: Flyweight objects for user interfaces. In 
Proceedings of ACM Third Annual Symposium on User Interface Software and Technology, 
pages 92-10l. 

Chambers, C. (1992). The Design and Implementation of the SELF Compiler, an Optimizing 
Compiler for Object-Oriented Progamming Languages. PhD thesis, Stanford University. 

Chambers, C. and Ungar, D. (1991). Making pure object-oriented languages practical. In 
OOPSLA '91 Proceedings, pages 1-15. Published as SIGPLAN Notices 26(10), October 



www.manaraa.com

11. Sharing Between Graphical Objects Using Delegation 189 

1991. 

(1992). Dore Programmer's Manual. Kubota Pacific, Inc. 

Elliott, C. (1992). TBAG via C++. Unpublished handout. 

Elliott, C., Schechter, G., Abi-Ezzi, S., and Deering, M. (1991). TBAG: Time, Behavior, and 
Geometry. Unpublished. Sun Microsystems internal document. 

Gaskins, T. (1992). PHIGS Programming Manual. O'Reilly and Associates, Inc. 

GL Programmer's Manual. Silicon Graphics, Inc. 

Guise, D. (1989). KR: Constraint-based knowledge representation. Technical Report CMU
CS-89-142, Carnegie Mellon Univeristy. 

Halperin, B. and Nguyen, V. (1987). A model for object-based inheritance. In 
[Wegner and Shriver, 1987]. 

Heller, D. (1991). Motif Programming Manual, volume 6 of The X Window System Series. 
O'Reilly & Associates, Inc. 

Howard, T. L. J., Hewitt, W. T., Hubbold, R. J., and Wyrwas, K. M. (1991). A Practical 
Introduction to PHIGS and PHIGS PLUS. Addison Wesley. 

IRIS Inventor Programming Guide. Silicon Graphics, Inc., 2nd draft edition. 

Kim, W. and Lochovsky, F. H., editors (1989). Object-Oriented Concepts, Databases, and 
Applications. ACM Press Frontier Series. ACM Press. 

Linton, M. A., Vlissides, J. M., and Calder, P. R. (1989). Composing user interfaces with 
InterViews. IEEE Computer, 22(2):8-22. 

Myers, B. A. (1989). User-interface tools: Introduction and survey. IEEE Software, pages 
15-23. 

Myers, B. A., Guise, D. A., Dannenberg, R. B., Zanden, B. V., Kosbie, D. S., Pervin, E., 
Mickish, A., and Marchal, P. (1990). Garnet: Comprehensive support for graphical, highly 
interactive user interfaces. IEEE Computer, pages 71-85. 

Nye, A. and O'Reilly, T. (1990). X Toolkit Intrinsics Programming Manual, volume 4 of The 
X Window System Series. O'Reilly & Associates, Inc. 

O'Shea, T. (1986). Why object-oriented programming systems are hard to learn. In OOP
SLA '86 Conference Proceedings. 

Pervin, E., Myers, B. A., Kosbie, D., and Kolojejchick, J. A. (1990). Opal Reference Manual: 
The Garnet Graphical Object System. Carnegie Mellon University. 

Stein, L. A., Lieberman, H., and Ungar, D. (1989). A shared view of sharing: The Treaty of 
Orlando. In [Kim and Lochovsky, 1989]. 

Strauss, P. S. and Carey, R. (1992). An object-oriented 3D graphics toolkit. In Catmull, 
E. E., editor, SIGGRAPH '92 Conference Proceedings, pages 341-349. ACM SIGGRAPH, 
Addison-Wesley. 

Sutherland, I. E. (1963). Sketchpad: A man-machine graphical communication system. 
In Proceedings of the Spring Joint Computer Conference, pages 329-346, Baltimore, MD. 
Spartan Books. 



www.manaraa.com

190 D. Brookshire Conner and Andries van Dam 

Tarlton, M. A. and Tarlton, P. N. (1989). Pogo: A declarative representation system for 
graphics. In [Kim and Lochovsky, 1989], chapter 7, pages 151-176. 

Tarlton, M. A. and Tarlton, P. N. (1992). A framework for dynamic visual applications. In 
Levoy, M. and Catmuli, E. E., editors, Proceedings of the 1992 Symposium on Interactive 
Three-Dimensional Graphics, pages 161-164. ACM SIGGRAPH. 

Ungar, D. and Smith, R. B. (1987). SELF: The power of simplicity. In OOPSLA '87 Confer
ence Proceedings, pages 227-241. Published as SIGPLAN Notices, 22, 12 (1987). 

Ungar, D. and Smith, R. B. (1991). SELF: The power of simplicity. Lisp and Symbolic 
Computation, 4(3). 

Upstill, S. (1990). The RenderMan Companion. Addison-Wesley. 

Wegner, P. (1987). The object-oriented classification paradigm. In 
[Wegner and Shriver, 1987]. 

Wegner, P. and Shriver, B., editors (1987). Research Directions in Object-Oriented Program
ming. The MIT Press. 

Wisskirchen, P. (1990). Object-Oriented Graphics. Springer-Verlag. 

Zeleznik, R. C., Conner, D. B., Wloka, M. w., Aliaga, D. G., Huang, N., Hubbard, P. M., Knep, 
B., Kaufman, H., Hughes, J. F., and van Dam, A. (1991). An object-oriented framework for 
the integration of interactive animation techniques. In Sederberg, T. w., editor, SIGGRAPH 
'91 Conference Proceedings, pages 105-112. ACM SIGGRAPH, Addison-Wesley. 



www.manaraa.com

12 

Acting on Inheritance Hierarchies 

Adelino F. da Silva 

A visual programming system is presented in which an object-based framework is imposed 
on a strongly typed object-oriented language. Active objects in this framework are viewed 
as a network of cooperating agents subject to mechanisms of behaviour replacement and 
delegation. Since these mechanisms are effective in a structured organization they tend to 
increase the active object's responsibilities and push delegation to a higher level in the design 
process. The framework is intended to provide, at a coarser level, the flexibility and dynamic 
characteristic of delegation-based languages without sacrificing the structural design and the 
efficiency enabled by strongly typed languages. 

1 Introduction 

Knowledge sharing is a powerful feature of object-oriented design. In many object
oriented languages inheritance is the main mechanism used for sharing code and 
behaviour. Inheritance hierarchies provide the supporting structure for the sharing 
of knowledge specified in base classes by derived classes. In class-based inheritance 
all objects of a class share a common interface. This inheritance uniformity pro
motes modularity and simplifies modification since changes made to a class may 
affect all its members [Wirfs-Brock and Johnson, 1990, Silva and Duarte-Ramos, 
1991]. Class hierarchies may, however, constrain evolution. The links between base 
classes and derived classes enforce a static structure which may be difficult to 
modify without extensive re-design. Run-time changes are not easily supported 
by inheritance-based languages. On the other hand, differential inheritance in 
which behaviour is shared at the level of objects may be required for a flexible de
sign. Delegation-based languages focus on behaviour sharing at the level of objects 
[Lieberman, 1986], Run- time change is supported in the implementation of delega
tion through message passing between objects. Therefore, concurrency is naturally 
incorporated in the concept of objects. Delegation allows an object receiving a re
quest message to forward it to some other object for processing. By focusing on the 
individual object, flexibility and dynamicism is gained at the expense of structural 
design [Stein, 1991]. 

In this paper, a visual programming system is presented (see [Myers, 1990]) in 
which an object-based framework is imposed on a strongly-typed object-oriented 
language [Ellis and Stroustrup, 1990]. A clear-cut distinction between active and 
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passive objects is made. Passive objects are perceived as resources used by active 
objects. This distinction has led to two kinds of inheritance hierarchies. Active 
objects in this framework are viewed as a network of cooperating agents subject 
to mechanisms of behaviour replacement and delegation. Since these mechanisms 
are effective in a structured organization they tend to increase the active object's 
responsibilities and push delegation to a higher level in the design process. As in 
actor systems, locality laws restrict the number of possible interactions between 
objects. The framework intends to provide, at a coarser-level, the flexibility and 
dynamicism characteristic of delegation-based languages without sacrificing the 
structural design and the efficiency enabled by strongly-typed languages. The do
main of application of the present platform has been originally directed to the 
design and implementation of visual programming concurrent systems. It is sup
posed that the fields of parallel programming [Suhler, 1990], and discrete-event 
simulation [Misra, 1986] could benefit from the present approach as well. 

2 Object-Oriented Concurrent Model 

Similarly to some actor systems [Yonezawa, 1990, Agha, 1986], we are interested in 
designing a system in which computations are performed by a collection of in de pen
dent concurrent computational units or agents. Agents manifest their behaviour in 
response to a finite set ofincoming communications. Agents may create new agents 
to whom they can delegate behaviour. A communication mechanism provides the re
quired interaction between cooperating agents. The agents exist in an environment 
having some hierarchical structure, and are controlled by a master agent which 
supervises common resources and manages allocation of finite space. Our approach 
emphasizes the development of a visual language for programming the network 
of agents and their interactions. In addition, agents are perceived as independent 
entities or objects existing in a particular environment having some specific hier
archical structure. Therefore, their behaviour may be modelled after class-based 
inheritance mechanisms. 

An agent is an active object with a structure consisting of state variables, a set 
of member-functions and a message queue. Each agent has a single serial pro
cessing power or thread. The communication between agents is local, in the sense 
that messages may be sent only to the sender's acquaintances, and asynchronous 
[Wegner, 1990]. No handshaking to send/receive messages takes place. Each agent 
has a unique queue in which incoming messages are put in the order of arrival. 
These messages are perceived as communicating objects, created by the sender, 
and passed through local shared memory to the receiver agent. The receiver will 
be, in general, responsible for destroying the message-object but it can also pass 
the message to other agents. Each agent is connected to other agents located in a 
finite two-dimensional space. These connections define the agent's acquaintances. 
The topology of connections is dynamic. An agent may be required to be connected 
to, or disconnected from, some other existing agent. In terms of delegation, three 
forms are considered: direct, private and hierarchical. In direct delegation, an agent 
requires the creation of a new agent to be integrated in the main network of agents. 
The new agent may then communicate with existing agents, reporting directly to 
the master agent. In private delegation a specific agent controls the new agents 
it creates in a tree-like manner. The new agents are allowed to communicate only 
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with the parent, being invisible to the base network. In hierarchical delegation, the 
agent constructs its own network of agents, modelled after the main network, and 
eventually reporting to it in the end. 

3 Implementation Model 

The concurrent capabilities of the system are integrated in the framework of object
oriented computing [Nierstrasz and Stadelmann, 1991, Nierstrasz, 1991]. The be
haviour of the active objects is implemented by a set of cooperating lightweight 
processes, which are threads of execution or tasks that share a single address space 
within the framework [Axford, 1989]. When an active object or agent is first created 
it enters the ready state. After it is scheduled for execution, as determined by its 
priority and the scheduling policy, it enters the running state. If a running object 
needs to await the arrival of a resource it enters the blocked state; it returns to the 
ready state when another agent unblocks it by supplying it the awaited resource. 
It may unblock automatically if a time interval expires. If a running object is pre
empted, by another active object or by an interrupt handler, it returns to the ready 
state. An active object can voluntarily sleep for a desired time interval. It returns to 
the ready state when the time interval expires or when it is explicitly awakened by 
another agent. An object which ends its own execution enters the terminated state 
until its resources are released. An agent in any state enters the terminated state 
if it is killed by another agent. The agent's set of possible states and transitions is 
represented in Figure 1. Each active object has a priority associated with it. Active 
objects are scheduled for execution according to the their priority so that the one 
having highest priority is always executed first. Those objects having the same 
priority are scheduled in the order that they become ready to run. An object can 
also change its own priority. Two scheduling methods are supported: event-driven 
scheduling and real-time scheduling. In the former, the system time automatically 
advances when all active objects are either blocked or sleeping. The scheduler exits 
when no active objects exist or can be awakened by advancing the time. In real-time 
scheduling, one can advance the system's clock using an interrupt source in order 
to synchronize it with the passage of time. 

Inter-object communication is done through shared memory instead of mailboxes. 
The double copying of messages into the mailbox and into the active object is thus 
avoided. The main facility used by the interface for inter-object communication 
is the blocking queue. Each active object automatically receives its own built-in 
blocking queue implemented as a doubly linked list. Messages are themselves ob
jects passed between active objects by placing them into queues. An active object 
can enqueue message-objects into another object's blocking queue using the active 
object's identifier. Message-objects are passed by reference, that is the queue main
tains references to the enqueued items. The blocking queue has the capability of 
synchronizing the activities of multiple objects. If an object attempts to dequeue 
a message-object from an empty blocking queue, it suspends execution awaiting 
the arrival of a message. When another active object places a message-object into 
an empty queue it unblocks the waiting active object, which then de queues the 
message-object after resuming execution. On the other hand, a single object may 
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Figure 1 : Agent's states and transitions 

serve a blocking queue to which requests are submitted by other objects. A time
out interval may be defined for active objects kept waiting in the blocking queue. 
Semaphores can be used to control access to shared data structures. 

To deal with active objects, a set of C++ classes has been built to introduce con
currency at the object-level. One fundamental class is the Thread base class (as 
partially defined in Figure 2). The public member functions of class Thread are 
inherited by all classes involving objects eligible for running. Therefore, a class of 
objects is declared active by deriving it from the Thread base class. By default, 
the Thread class constructor initializes the object and puts it in the ready state. 
Class Thread also manages the object's built-in queue by supplying member func
tions which encapsulate the behaviour of enqueueing and dequeueing of message
objects. All enqueued objects are instances of the same Qelement class. They serve 
as standard carriers which reference the actual message-objects containing the in
formation to be communicated. A link field in class Qelement enables the linking of 
Qelement objects into a queue. The actual behaviour of the active object is encapsu
lated in member functions subject to redefinition in derived classes. The behaviour 
of an active object can be modified by other active objects or by the master agent. 

4 Visual Programming 

Agents live in a visual programming environment [Chang, 1990, Glinert, 1990]. 
The environment simulates a discrete two-dimensional space. Each agent has a 
visual signature represented by an icon, and an address specified by the 2D co
ordinates where the agent's visual signature resides. When an agent is created it 
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/ / Concurrent base class 

friend class N etworkManager; / / network manager is a friend 
virtual void processO; / / main active behaviour 

/ / enqueue objects in receiver agent's queue having identifier Taskld 
virtual void enqueue(void*,char*,TaskId); 

/ / dequeued object's class name is passed to external function 
virtual void *dequeue(char *nm); 
virtual void taskO { processO; } 
Thread( char*, int, int ); 
static TaskId tid[MAXTASKNUMBER1; 

/ / ... other member-functions 
protected: 

char *pname; 
intpnum; 
int priority; 

/ / ... other member-variables 
}; 

/ / default active member-function 
/ / constructor 
I / task identifiers 

/ / Thread name 
/ / Thread id 
/ / Thread priority 

class Qelement { / / Double linked list objects reference enqueued objects 
public: 
/ / ... other member-functions 
private: 

LINK niJink; 
void *pobj; 
char *objNm; 

/ / ... other member-variables 
}; 

/ / Qelement's link 
/ / pointer to enqueued object 
/ / enqueued object's name 

Figure 2: Definition of queue elements and threads 

is assigned a non-occupied location in the environment. In the current implemen
tation, each agent is limited to having at most four acquaintances, one for each 
side of the rectangular icon box, with whom it can communicate at any given mo
ment. The channels of communication between the agent and its acquaintances 
are visualized by directed links. Together, the icons and the links form a dynamic 
dataflow diagram. This diagram can be set up and modified interactively by the 
user, or it can evolve as a result of the actions of the agents in the environment. In 
interactive mode, the agents are created by dragging icons from an icon table to the 
proper screen locations. By default, this action automatically activates the object 
which the icon represents by putting the object in the ready state. Each agent has 
the possibility of managing an attached window object. The window object permits 
the visualization of the agent's operations as well as the querying of information 
related to its integration in the network. 

As regards the active object's responsibilities, the main issues are the assignment 
of replacement behaviour, the definition of the communication and synchronization 
mechanisms, and the specification of delegation. Each active object has a set of 
member functions which account for the behaviour characteristics of the class (Fig-
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ure 3). If desired they can be activated as tasks. Since these member functions have 
to be defined at compile time they model a static behaviour. The object's replacement 
behaviour is implemented by an external function, called visiting function, which 
is passed to the object and is made eligible for concurrent execution. This function 
can be run as a task in accordance with the schedule set up by the task manager. 
This external function is an application in its own right which can be coded and 
tested independently. Since the visiting function can be substituted at run-time it 
accounts for the dynamic capabilities ofthe framework. The function specifying the 
new behaviour can be passed to the active object by other active objects, or by the 
network manager responsible for operating the platform. Moreover, by acting on 
the dataflow diagram, the user can interactively re-assign functions to the objects 
from a pre-defined function table. 

class Agent: public Thread { 
public: 
/ / enqueue object "name" in channel ic 

/ / Definition of agents as active objects 

int EnqOne(void *, char *name, int ic); 
/ / dequeue one validated object (irrespective of incoming channel) 

void* DeqOne(char **AllowedInputObjNames, int nInput, int i, int &id); 
/ / substitution of agent's active function 

void seLproc(void (*Icfunction)(void*» { icfn = Icfunction; } 
void processO; / / process main active function 

/ / Icfunction is an external function 
Agent(NetworkManager *, void (*Icfunction)(void*) = NULL, ... ); 

/ / ... other member-functions 
private: 

friend class NetworkManager; 
NetworkManager *pmnger; 
void (* icfn)(void *); 
Agent *in[4]; 
Agent *out[4]; 
WndX *wic; 
int ix,iy; 

/ / ... other member-variables 
}; 

Figure 3: Class of active objects 

/ / network manager is a friend 
/ / network manager's services may be required 
/ / replaceable agent-specific-function 
/ / connections from (4) acquaintances 
/ / connections to (4) acquaintances 
/ / agent's attached window 
/ / handle point 

An important design issue is to separate the specification of the communication 
and synchronization from the specification of the units of computati(;m. Each active 
object has a fixed number of channels of communication, and a queue for receiving 
incoming messages. Once defined, the object's channels are maintained and oper
ated by the network manager. Each object is visually linked to its acquaintances. 
For inter-object communication purposes each external function or application ma
nipulates input and output objects which must be taken into account in a proper 
dataflow setting. In order to separate the definition of the active object's behaviour 
from the definition of the message-objects acceptable to it, the active object has the 
possibility of enqueueing and de queueing messages which are not directly inter-
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preted by the object but passed back to the external function manipulating them. 
Therefore, the active object is not bound to a static set of acceptable input/output 
objects. On the other hand, the behavioural specification carried by the external 
function may be coded independently. 

5 Framework Management 

The framework (or network) manager is the entity controlling the network of agents 
and their inter-object communications. The data structure operated on by the man
ager must fulfill some design specifications as regards to its prospective responsi
bilities. The data structure must be dynamic in order to enable efficient updates. 
Insertions, deletions as well as node searching are often executed operations. In 
addition, the data structure must serve a visual programming environment sup
porting interactive re-specification. On the other hand, following the active ob
jects' delegation assignments, the structure must permit the dynamic redefinition 
of the objects' attributes. A modified pseudo-point-quadtree has been introduced 
[Overmars, 1982, Samet, 1990], The data structure is a hierarchical quaternary 
tree whose leaves store 2D handle points associated with the screen locations of the 
active objects' signatures or icons. The leaves of the quadtree structure do not store 
the active objects themselves but hold pointers to arbitrary data types which can be 
customized by the application. The quadtree structure was defined as a generalized 
class (Figure 4). The member functions implement the required dynamic operations 
of node insertion, node deletion, node searching, etc. The generalization ofthe class 
to objects of any type is implemented through macros. Another important feature 
is the possibility of having an external user-defined function to be passed to the 
generic quadtree structure. This visiting function effectively enables the dynamic 
substitution of global operations acting upon the quadtree structure. Hence, the 
dynamic reassignment of replacement behaviour for the structure parallels and 
complements the one for active objects. 

In order to build an application, a default table of icons representing active objects 
is presented to the user. A network of active objects may be visually programmed by 
moving instances of the icons to specific screen locations and dragging lines between 
them, according to the communication pattern of the corresponding active objects. 
For active objects referenced in the icon-table, the introduction of new active objects 
in the network amounts to the insertion of new icons and respective links in the 
data structure. This introduction must nevertheless satisfy proper layout require
ments. Redefinition or substitution of active objects' functions is supported by the 
interface as well. Redefining an object's function involves two aspects: the redefini
tion of the function, i.e., the (textual) code, and the redefinition of its visual (iconic) 
content, presentation and textual-to-visual correspondence. For dealiJ;lg with these 
matters a class was defined (class FnArr). The class manages operations on an 
array of pointers to functions. Operations such as add, remove and replace care 
for the maintenance of a set of basic functions. An external user defined function, 
for instance, may be added to the basic function set and thus be made available to 
the designer. The class deals with the textual to visual mapping as well. Each icon 
function has a unique visual signature which evokes its code contents. The func
tion's visual signature must then be incorporated in the icon table to be presented 
to the user. To deal with the manipulation of information as described above, the 
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typedefvoid (* VISIT)(void *); 

class Knode { 
private: 

friend class Ktree; 
Knode* pk[4]; 
int ox, oy; 
void*body; 

/ / ... other member-variables 
}; 
class Ktree { 
public: 

/ I Node of quadtree structure 

/ / four sons 
I / point coordinates 
/ / pointer to active object 

II Modified pseudo-point-quadtree 

int insert(int ,int, void* ); / / node insertion 
Knode* seek(int ,int ); / / node searching (by coordinates) 
void remove(int ,int ); / / node deletion 
void set-process(VISIT what-to_do) { visit = what-to_do; } 
Ktree(VISIT what_to_do = NULL); 
~Ktree(void) { cleanupO; } 

/ / ... other member-functions 
private: 

Knode* root; 
void (* visit)(void*); / / global visiting function for Ktree 
void cleanup(Knode*n = NULL, int first=1); 

/ / ... other member-variables 
}; 
II Example of macro declaration 
#define mkdtree(type) name2(mkdtree,type) 
#define mkdtreedeclare( type) \ 
struct mkdtree(type) : Ktree {\ 

mkdtree(type)(void (*whaUo_do)(type *) = NULL) : (whaUo_do) {} \ 
/ / ... other declarations 
} 
declare(mkdtree,Agent); / / tree of pointers to Agents 

Figure 4: Defining elements of the quadtree structure 

tools provided by the main interface for text and icon editing may be used. The 
objects of class FnArr are used by the framework manager to make the interface 
more dynamic (see Figure 5). 

6 Delegation 

6.1 Characterization 

Inheritance allows incremental definition of classes. All instances of a class use the 
definitions of attributes stored in the class. The grouping properties of the hier
archy account for the structure of all instances of a class. Therefore, any change 
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class N etworkManager : public Window { 
public: / / the manager operates in a visual environment 

void meshO; / / introduce in dataflow graph 
void link(Agent *p); / / establishing connections with acquaintances 
Agent* fetchO; / / find agent 
Agent* seek(int , int ); / / search agent's handle 

/ / pre-defined functions and icons are passed to the manager 
NetworkManager(FnArr*, ... ); 
~N etworkManagerO; 

/ / ... other member-functions 
private: 

mkdtree(Agent) *tree; 
FnArr *xfni; 
VISIT fnO; 

/ / ... other member-variables 
}; 

/ / tree of pointers to agents 
/ / referencing external functions and their icons 
/ / structural visiting function set to xfni[O}; 

Figure 5: Features of the network manager 

made to a class attribute will affect all of the instances. Moreover, instances in 
strict inheritance are independent since changing the state of one instance does 
not affect other instances. Delegation, on the other hand, allows incremental def
inition of all objects. Any object can serve as a prototype. An extension object is 
constructed by defining a list of objects sharing knowledge with the new object 
(its prototypes), and a personal behaviour pertaining to the object itself When an 
extension object receives a message it may try to respond by itself, or rely on the 
prototypes by forwarding (delegating) the message. In many cases the object being 
delegated to can be perceived as performing a service for the original object. In 
these circumstances, a reply mechanism must be provided. For an analysis of the 
main paradigms used in existing object-oriented graphics systems see Conner et 
al. [Conner and van Dam, 1993]. 

In our model we have used inheritance to model the structural properties of the 
active objects (agents). The agents' basic common attributes, in the sense that they 
are not subject to change, are shared by inheritance. Passive objects are mainly 
thought of as resources, being modelled by inheritance as well. We have imple
mented active objects as objects belonging to the same class. This would be overly 
restrictive in a strict hierarchical system. However, we have previously introduced 
some mechanisms for modelling differential behaviour among instances of a class 
structure. The replacement behaviour mechanism allows the modelling of agents 
sharing a common structure and having specialized behaviour defined at the in
stance level. It is this specialized behaviour, not provided by the instance template 
and subject to dynamic modification, which permits the flexibility that inheritance 
lacks. Since we end up with objects having different attributes it makes sense to 
consider ways of playing with their inter-dependences. 

By implementing dynamic behaviour replacement, we have achieved differential 
behaviour at the instance level but not yet for the dependence of instances which 
goes with delegation. The forward and reply features must be supported as well. 
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In order to support message passing among objects, an environment supervised by 
a manager has been introduced. As referred to before, "the physical environment" 
is a discrete 2D space in which each agent has its own mail address. Dependences 
between objects are maintained in this space, subject to the limitations imposed 
on the number of connections per active object. These connections are visually 
supported by the network. There are, however, other dependences between objects 
which may occur as a result of the private activity of an agent which may not have 
direct visible support within the original network. This mechanism is characterized 
below under the name 'private delegation'. 

6.2 Mechanisms 

Active objects wanting to implement delegation have several alternatives. (Several 
other possibilities, such as broadcasting and forwarding unacceptable messages, 
are not considered here). At the active object level, a script may reference other 
active objects responsible for implementing some specialized service. This can be 
achieved by associating a mail address with an available service within the net
work. The agent's script here is roughly equivalent to the list of prototypes in 
delegation languages. Nevertheless, in order to allow for full flexibility the agent's 
scripts should be dynamic. Another possibility is to query the manager for services 
and mail addresses associated with the network of agents~ Suppose that an agent 
does not know who can provide a certain service. He may query the manager for 
this purpose and implement delegation afterwards. Once the mail address of the 
delegated object becomes known, links between delegating and delegated objects 
can be established. Therefore, under this assumption, delegation uses the resources 
and environment control functions assigned to the manager. Yet another dimension 
of flexibility worth mentioning is provided by delegation preceded by creation. An 
agent may require the manager's services to incorporate a new agent in the net
work. After assigning some behaviour to the new agent, delegation follows the usual 
mechanisms. 

The reply mechanism is implemented through the specification of a destination 
address. A reply mail address is passed to the delegate object, which may well 
be the mail address of the delegating object itself Furthermore, the explicit use of 
destination addresses enables the composition of delegation in a chain of delegating 
agents. The implicit form of delegation supposes that some service will be provided 
by an agent on behalf of the delegating agent with no need to return a reply. 

As implied above, delegation is implemented by asynchronous message passing 
between agents. Therefore, the concurrent model of computation described earlier 
is used for this purpose. The basic synchronization mechanisms at our disposal 
are the blocking queues and the assignment of priorities. Messages are dequeued 
in the order in which they arrive to the blocking queue. Blocking queues provide 
mutual exclusion which allows them to be safely called by multiple agents. Priorities 
associated with the agents' threads can be changed in order to fit an appropriate 
schedule. An agent can also change its own priority. Re-scheduling of the agents' 
activities is controlled by the manager. The user can control the re-scheduling 
mechanism by interacting with the graphical user interface. 
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6.3 Composition 

We now consider some forms of delegation for composing applications with different 
requirements namely, direct, private, and hierarchical delegation mechanisms. 

In direct delegation the new object is to be linked to the existing network. The dele
gating object then requests the manager's services for settling the new object in the 
environment and linking it to its specified acquaintances. A behavioural function 
is passed to the created object by the delegating object. As usual, once created the 
new object enters the ready state until it is scheduled for execution according to 
the priority assigned to it. Of course, the new object's task may depend on objects 
whose tasks have been executed earlier, thus leading eventually to deadlock. Active 
objects have, however, the possibility of requesting the re-scheduling of tasks and 
the re-assignment of priorities. In order to allow for runtime modifications, these 
actions are typically programmed within the visiting function passed to the active 
object, and executed by the object's active member-function associated with that 
function. 

Private delegation means that the active object directly controls the execution of 
the objects it delegates to in a parent-child relationship. The new objects are not 
integrated in the global framework of active objects. In addition, the parent blocks 
until the completion of its children. Private delegation activities are not visually 
supported by the graphical interface. The private agent bears total responsibility 
for the agents it may have created as well as for the activities delegated to them. It 
may, however, depend on the operating system for thread creation within the global 
task system, provided appropriate restrictions on priority assignments are met. 

In hierarchical delegation the active object has the possibility of acting as manager 
ofits own network of active objects. The top-level network is suspended and control 
is passed to the assigned sub-manager. The top-level structural pattern is repli
cated by instantiating a new manager class object at the new hierarchical level. In 
particular, the user can interactively define a new dataflow diagram representing 
a close-up of the behaviour of some active object (Figure 6). Except for the initial
ization and information transfer after completion, interaction between hierarchical 
diagrams is not allowed. As soon as the sub-network has finished execution the up
per manager resumes operation according to the scheduler. The scheduling policy 
followed has maintained the overall task space flat and assigned higher priority 
to the tasks down the hierarchy. As before, active operations may be defined at 
run-time by the external function passed to the active object concerned. 

7 Conclusion 

The inheritance relation is an important object-oriented concept supporting reuse 
and extensibility. Inheritance relationships permit the modelling of abstractions 
as part of the design phase by identifying commonality among abstractions. In
heritance in combination with polymorphism are design features providing strong 
support for the extension of existing systems. On the other hand, concurrent object
oriented design often calls for loosely coupled systems, leading to models of com
putation based on dynamically interacting objects. The tradeoff between flexibility 
and inheritance has led to the emergence of a large variety of object-oriented lan-
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Figure 6: Hierarchical delegation in a dataflow setting 

guages. The design approach presented in this paper introduces concurrency in the 
framework of the C++ language. Classes have been introduced to model processes 
as objects having their own thread of execution. Communication among active ob
jects has been developed in a structured visual programming framework. Several 
delegation mechanisms have been conceived and implemented to support highly 
interactive software development. The structural characteristics of the framework, 
in conjunction with the delegation patterns of the active objects, effectively enabled 
the reconfiguration of the interface and the dynamization of the intercommunica
tion mechanisms. The adequacy of the present framework to model animation and 
discrete event simulation problems will be evaluated in the future. 
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The PREMO Framework: 
Object-Oriented Issues 

Peter Wisskirchen 

The need for a coordinated method for addressing all aspects of the construction of, presen
tation of, and interaction with multi-media objects has lead to the need for the standardization 
of a Presentation Environment for Multi-Media Objects (PREMO). In this paper the state of 
discussions inside the DIN working group is reported focusing on object-oriented aspects of 
the PREMO framework. 

1 Introduction 

Efforts towards a second generation of graphics standards have led to the formu
lation of a New Work Item Proposal [ISO, 1992a] formulated by an ISO Working 
Group arguing for a Programming Environment for Graphics Objects. As a reaction 
to this proposal, a working group of the German Standardization Body DIN (DIN 
working group) has worked out a document describing the overall architecture and 
kernel functionality ofa coming family of standards. On the basis of this work, Ver
sion 1 of an Initial Draft for a Presentation Environment for Multi-Media Objects 
(PREMO) was composed during an ISO/lEC JTC lISC 24IWG 1 meeting at Gut 
Ising, Chiemsee, Germany in October 1992 [ISO, 1992b]. 

In this paper the state of discussions inside the DIN working group is reported 
focusing on the object-oriented aspects of the PREMO framework. It should be 
noted, however, that this paper is influenced by personal opinions of the author and 
it should therefore not be misinterpreted as the official DIN view. 

In [Kansy and Wisskirchen, 1991] it was argued that the complexity of graphics 
and the vast diversity of constituencies with differing requirements could not be 
fulfilled by one standard. On the other side, it is not desirable to provide a separate 
standard for each constituency as this would be too expensive for developers of 
graphics system, too difficult for educating graphics programmers, and it would 
destroy the benefit of portability of programs. 

Therefore, a new effort has been started to generate a second generation graphics 
standard which comprises the capabilities of existing standards, avoids the errors 
and pitfalls of the first generation standards, is sufficiently flexible to be adapted 
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to the needs of a variety of applications, and provides all these capabilities in a 
well-structured way. To achieve this goal, PREMO will be defined as a multi-part 
standard of closely related, configurable components, open for extensions whenever 
new development has to be taken into consideration by standardization bodies, and 
using the potential of object-oriented programming to achieve modularity as well 
as flexibility. 

Examples ofintended PREMO components are class libraries for 2-D and 3-D basic 
systems, different renderers including photorealistic presentations, animation sys
tems and geometric modellers. In particular, the intended components shall play 
a key role in multi-media applications by providing, in a standard way, the main 
functionality for computer based modelling, display and animation of information. 

The framework is based on a hybrid model, allowing the use of different modelling 
paradigms concurrently. Thus single output primitives, part hierarchies, explicit 
and implicit functional representations, as well as complex rules and constraints 
to describe complex object dependencies can be used to create one single graphics 
scene. 

A PREMO system consists of a set of components each described as a class library. 
Specific rules describe how single components may be combined to build up a valid 
configuration. 

2 Overall Architecture of PREMO 

The architecture of PREMO is based on the definition of a framework and sets 
of components. Components consist of a set of related objects. Components en
capsulate related sets of functionality (data and operations) while the framework 
gives rules for both individual components (as sets of related objects), and between 
components (in terms of allowed interrelationships and interfaces). The architec
ture also contains rules describing criteria for the development of components as 
well as how to configure, extend and customize existing components to generate a 
specific system for some application area. PREMO is based on a specialization of 
the Computer Graphics Reference Model (CGRM), a draft international standard 
[ISO, 1991]. In PREMO, the five environments ofthe CGRM are grouped into three 
PREMO environments as shown in Figure 1. This grouping was done because, at 
this level of abstraction, PREMO is concerned only with the interface to the lower 
three CGRM environments and is not concerned with a finer level of detail. These 
three environments are: 

• modelling environment (construction environment), 

• virtual environment with the scene as a collection of primitives to be displayed, 

• presentation environment (comprising viewing, logical, and realization envi-
ronment). ' 

The modelling environment accomodates the application-oriented modelling com
ponents; the presentation environment contains the different presentation tech
niques; the scene is the mediator between different modelling and presentation 
components (see Figure 2). 
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Modelling 

Scene Virtual Envirorunent 

Viewing Envirorunent 

Presentation Logical Envirorunent 

Realization Envirorunent 

Figure 1 : Environments of the CGRM as seen in PREMO 

3 Modelling (Construction Environment) 

An application program interfaces primarily with modelling components (modeller) 
which create scenes. Such modellers consist of a family of related producers capa
ble of creating the desired output objects and inserting them into scenes. Different 
modellers allow the generation of models of different complexity. Examples include 
geometric modelling, animation, physically based modelling, data visualization, 
and music composition. Different modellers can contribute to one scene and one 
modeller can contribute to several scenes. The modellers provide rich and applica
tion specific functionality to build up a model according to the needs of an existing 
constituency. The model may be described as an arbitrary structure of objects, e.g., 
as a part-of-hierarchy or a group of moving objects' constraints by forces. Objects 
may depend on some mathematical calculation (scientific visualization) or on other 
objects (constraints). Any value may be expressed by a constant value or a time 
function for animation purposes. Properties may specify graphical and application 
specific aspects intermixed. Geometry is a property which is defined in application 
specific coordinates. Modelling transformations are properties which position ob
jects within a common reference coordinate system used in the virtual environment, 
called world coordinates (WC). 

4 Scene (Virtual Environment) 

The scene in the virtual environment of the Computer Graphics Reference Model 
is a central concept used in PREMO. The scene is a collection of output objects 
delivered by one or several modelling systems to be processed by one or more 
producers. Functions on the scene include addition and deletion of output objects. 
The scene serves as mediator between modelling systems and renderers. It supports 
the output primitives in the most general form. As it does not use or manipulate the 
content of output objects, it should not be seriously affected when new modellers 
and producers are developed which introduce new output objects and properties. 
The scene does not support structure. Structure belongs to the modelling domain 
as such structure describes a decomposition at the modelling level rather than a 
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Figure 2: The scene as mediator between different modelling and presentation 
components 

graphical decomposition of a scene. All values of output objects (its properties) may 
be defined as time dependent information. The time information is maintained in 
the scene. The scene is therefore not a snapshot, a single frame, but describes the 
scene over a finite or infinite time interval. This enables the system to optimize the 
computation of successive images; sufficient information for generation of special 
effects like motion blur and temporal anti-aliasing is available at this level and can 
be given to producers. A scene can be animated by producers in two different ways. 
In synchronous time mode, the scene is evaluated by a producer at times strictly 
dictated by an external clock (e.g., real time or slow motion). In event driven mode, 
one or more producers evaluate a scene at fixed (simulated) instants prescribed 
by the application. The progression of time is controlled by events like "production 
finished" or by application specific events. Sound is supported as an object which 
can be used as either an output object or a property object. 

5 Presentation 

In PREMO, producers, such as renderers, determine the way and the quality of pro
cessed scenes. They use different algorithms for generating output objects including 
flat shading, ray tracing, radiosity based methods, MIDI sound etc. Therefore, pro
ducers are organized into different classes. 

Producers have different requirements about what kind of output objects they can 
handle. Applications may use analytically defined bodies like spheres and boolean 
conjunctions of bodies. A producer may expect simple basic output objects like 
triangles, lines, text, and sound segments or it may require complex primitives 
with specific surface attributes to calculate reflected and refracted rays. For doing 
this, a producer asks the output objects to describe themselves in these terms. 
This makes producers independent of specific modellers and their output objects; 
it requires that a set of methods is defined which has to be served by all output 
objects processed. We call these methods that are a prerequisit for the definition 
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of extensible renderers "rendering capabilities". A simple producer may ask for 
a triangulation of an object with simple colour values at the corners, whereas a 
high performance producer may demand an analytic description of the object and 
material properties like green velvet. 

A producer knows the characteristics of the destination objects which may be objects 
such as pix-maps, z-buffers, two-dimensional primitives, or video frames. In the 
latter case, this knowledge is required to generate an adequate display optimally 
(e.g., filling a frame buffer with regard to the appropriate resolution and colour 
calibration or generating PostScript output). Application relevant characteristics 
can be inquired by the application from the producer. 

For camera objects, properties control the viewing (camera parameters). When one 
object is to be viewed from different positions, two camera objects with different 
camera properties have to be generated. 

PREMO is formulated in a language independent way by using object-oriented 
terminology based on the class-instance paradigm. Some problems in finding a lan
guage independent functional description which is precise enough but gives enough 
room to come to convenient language bindings for the different object-oriented lan
guages currently in use, were already mentioned in [Kansy and Wisskirchen, 1991]. 
As a first approach, at the Chiemsee meeting in October 1992, an adaptation of the 
OMG Basic Object Model was included in the Initial Draft [ISO, 1992b]. 

6 How to Extend and Customize PREMO? 

Presently, different ideas are being discussed to extend and customize PREMO 
by adding new renderers, modelling paradigms, or sets of output primitives. By 
extension we mean the integration of new standard components by respective com
mittees. By customization we mean the integration of non-standard components 
into a pre-manufactured kernel by the application programmer or by a third party. 

6.1 Extension 

As mentioned, the model's entities are evaluated to produce or change the state of 
a scene purely focusing on graphics aspects. To support the specification and inte
gration of a new modelling paradigm, a scene description interface (SDI) will be 
standardized. SDIis defined by a set of methods provided by a class Scene, and it 
consists more or less of the usual methods to edit a set oriented graphics collection 
consisting of single output primitives. Each modelling component introduced as a 
new standard component must be described by using the SDI as far as the commu
nication between model and scene is concerned. New output components, including 
renderers, can be introduced in the sense of extensions by describing their effects 
on a given scene. This is possible because the scene is transparently defined as a 
set of output primitives. 

6.2 Customizing by Adding Non-Standard Components 

Based on a standard SDI, non-standard modelling components, e.g., procedural de
scriptions [Upstill, 1990] can be plugged in. Such a component may be realized by a 
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third party and can then be integrated into PREMO provided that it communicates 
via the SDI interface (cf. Figure 2, right). Procedural descriptions can be used for 
many purposes, for example, to define fractals and other recursive models, or to 
introduce composed primitives with new editing methods [Amburn et aI., 1986]. 

Construction Environment 

r-''--.L-_-r-......... ~.,......."''''Virtual E nvi ron me nt 

Figure 3: Scene description interface 

A given configuration may be customized, for example, by adding non-standard 
output primitives as part of a modelling component. This is quite simple as long 
as these objects are able to produce lower level primitives that can be understood 
by the scene and the renderers evaluating it. These possibilities are described in 
[Egbert and Kubitz, 1992] for an object-oriented environment. 

6.3 Using the Potential of Inheritance 

Up to this point, we have mainly argued that the definition of interfaces between 
different environments allows adding new components as long as their interfaces 
are compatible with the definitions prescribed by the standard. The main poten
tial of an object-oriented standard, however, can be seen in offering the use of 
inheritance in an appropriate way. In the following, we give two examples showing 
overriding of default behavior and the use of abstract classes in connection with 
the proposed standard. 

6.4 Overriding Default Behavior 

Inheritance supports incremental program development and modification by intro
ducing subclasses with methods overriding predefined behavior. Overriding meth
ods is one of the central concepts of object-oriented application frameworks based 
on the idea of a generic application such as MacApp [Schmucker, 1986], ET++ 
[Weinand et al., 1989] or GINA [Spenke et al., 1991] and it is extensively used in 
current object-oriented graphics systems to modify default behavior. 

Overriding an existing method is not strictly against information hiding because 
the implementation of the method being overridden is not used in this process. 
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Nevertheless, overriding requires both the name (pattern) of the method in ques
tion and its class to be revealed. In the field of standardization, there are strong 
arguments against revealing to many classes and method-patterns in a standard 
document because this would limit the freedom for a manufacturer to realize his 
own implementation. Therefore, the selection of classes and methods to be revealed 
and mentioned in the standard as candidates for customization requires some sen
sitiveness and fine tuning. 

Examples of methods which can be overridden may be reactions to pick-operations, 
definition of pick-sensitive areas, interaction feedback and other methods where 
experiences with existing standards have shown a demand to achieve higher flexi
bility. 

6.5 Generic Renderers 

An important example for using object-oriented approaches is the definition of 
an extensible ray tracer. By an extensible ray tracer, we understand a raytracer 
which can handle newly introduced (user defined) types of primitives as long as 
they are defined as subclasses of a predefined abstract class. To reach the goal 
of extensibility, the division of functionality between the raytracer and the scene 
objects (primitives) to be rendered must be defined in an appropriate way. The 
basic idea is the concept of a raytracer which can do without pre coded knowledge 
about specific primitives types by sending appropriate inquiries to scene objects 
when accessing them. In this case, all knowledge required by the renderer is (and 
must be) provided by respective methods of the primitives (rendering capabilities). 
For raytracing, these methods are essentially methods to inquire the primitive's 
bounding box, ray intersection point for a given ray, normal vector and material 
properties at the intersection point. Note that the basic idea of an extensible ray 
tracer, although somewhat limited by using just plain C, was already suggested by 
Heckbert's hints on writing a ray tracer [Heckbert, 1991]. Rendering capabilities, 
in the sense that a user-defined object replies to a drawing protocol message with a 
collection of base objects that can be drawn by a predefined renderer, are described 
in [Bahrs, et al., 1992]. 

How can the idea of extensible renderers be used for the coming graphics stan
dard? A standard will focus on a few well understood rendering paradigms. These 
rendering paradigms have to be analyzed carefully to define a minimal set of render
ing capabilities the primitives must provide for each type of renderer. To organize 
these methods, one should note that some methods, for example, the calculation of 
a normal vector, are required by different types of renderers, whereas some other 
methods (mesh approximation) may be irrelevant for some renderers (ray tracers). 
Therefore, in order to organize the rendering capabilities in a way that duplica
tions of methods with the same functionality are avoided, a class hierarchy (using 
multiple inheritance) is proposed as part of the coming standard document. 

In analogy to rendering capabilities, we suggest as well to assign additional meth
ods, e.g., for geometric modelling, interaction, deformation, reading and writing 
metafiles, to primitives and to organize them by abstract classes. Consequently, 
a primitive, e.g., a sphere, can be considered as an object whose type is rather 
dynamic. When porting an application using spheres across different platforms it 
depends on the specific renderers found on the platforms as to what capabilities 
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must be installed (maybe by mixing them into the sphere's class hierarchy). Thus, 
the class hierarchy for primitives will be installation dependent which sounds to 
be a rather complicated concept. But nevertheless, the advantage of this rather 
dynamic approach is that tailorability will be supported and over-specification is 
avoided by exclusively adding capabilities that are really used on a given platform. 
For this to happen, how the different object-oriented languages will support flexible 
adding and removing of methods needs to be examined. 

7 Type and Object Identity 

One specific problem discussed in animation concerns the deformation of graphics 
entities in time. Such an object could (and should) be seen as an item with stable 
identity but with changing behavior. With such a concept, it is understandable that 
a prototype-delegation model with some very specific characteristics was proposed 
in [Zeleznik et al., 1991]. 

In PREMO, the following approximation to handle this problem, without leaving 
the class-instance based model, is currently discussed: 

• See all time varying graphics output objects as instances of a very general 
primitive type, for example, a nurb. Then deforming, for example, a circle into 
a quadrangle could be interpreted as a deformation of one nurb by changing 
its parameters in time. Although nurbs cannot be handled very easily by 
the application programmer and not all cases can be modelled in this way, 
the requirements of object deformations should not have the consequence 
of selecting an alternative programming paradigm when defining an object
oriented graphics standard. 

• Define deformation objects with changing geometry by introducing a special 
class where time dependent geometry is modelled by information "contained" 
in these objects. Such an object could provide methods to assign, for example, 
a circle at time to, and a square at time t1, together with a deformation rule. 
Problems with this model are that the usual methods to handle a circle or a 
square are not part of the deformation object itself The question is whether 
this should be seen as a serious disadvantage in practical applications. 

8 Further Problems 

Not all modelling paradigms presently used in computer graphics have been an
alyzed by our working group concerning their compatibility and affinity with the 
object-oriented programming paradigm. Is the object-oriented paradigm well suited 
to formulate the time dependent relations of n graphics entities by a s,et of differ
ential equations? Is the set of equations itself modelled as an object in a natural 
way? Similar questions seem to be open in relation to constraints. 

Constraints have been used for a long time in connection with object-oriented 
systems. Some recent publications propose and discuss a smooth integration of 
the constraint mechanism into object-oriented systems [Wilk, 1991, Laffra, 1992]. 
Nevertheless, as presented by E. Blake at the Third EuroGraphics Workshop on 
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Object-Oriented Graphics, powerful constraint mechanisms violate encapsulation 
and thus compromise important goals of object-orientation. Thus, it may cause 
problems for a standard committe - obliged to rely on existing programming lan
guages, such as c++ - to include a constraint mechanism in a convenient way into 
an object-oriented standard. 
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An Object-Oriented Architecture for 

Constraint-Based Graphical Editing 

Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides 

Direct-manipulation graphics editors are useful tools for a wide variety of domains such as 
technical drawing, computer-aided design, application building, and music composition. Con
straints can be a powerful mechanism for specifying complex semantics declaratively in these 
domains. To date, few domain-specific graphics editors have provided constraint-based speci
fication and manipulation facilities. Part of the reason is that graphical editors are hard enough 
to develop without implementing a constraint system as well. Even though graphical editing 
frameworks can reduce the difficulty of constructing domain specific graphical editors, a fun
damental problem remains: there do not exist general constraint solving architecturBs that are 
efficient enough to support highly interactive editing, yet suitably flexible and extensible to adapt 
to different editing domains. 

Addressing this problem, we present an object-oriented architecture that integrates the graph
ical editing framework Unidraw with QOCA, a powerful new constraint solving toolkit. QOCA 
leverages recent advances in symbolic computation and geometry to support efficient incre
mental solving of simultaneous equations and inequations, while optimizing convex quadratic 
objective functions. QOCA also supports new kinds of constraint manipulation that have novel 
applications to graphical editing. QOCA exploits the implementation language to provide a 
convenient, object-oriented syntax for expressing constraints in the framework. The result is 
a generic and easily extended architecture for constraint-based, direct-manipulation graphical 
editing. 

1 Introduction 

Constraints are a powerful formalism in graphical user interfaces, both as an aid 
in interface development and as an interaction paradigm. Constraints can specify 
spatial and semantic relationships declaratively between objects in a user interface, 
while an underlying constraint solver will ensure that interface meets the speci
fication. Previous work [Borning, 1981, Borning and Duisberg, 1986, Epstein and 
Lalonde, 1988 Maloney et at, 1989, Nelson, 1985, Jr. and Allan, 1990, Sutherland, 
1963, Szekely and Myers, 1988] has established that constraint systems need at 
least the following capabilities to be effective in graphical user interfaces: 
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• multi-way constraints that can express at least simultaneous linear equations 
and inequations [Freeman-Benson and Borning, 1992, Helm et al., 1992a). 

• low latency and high-bandwidth feedback during direct manipulation [Mal
oney et aI., 1989]. 

• incremental addition and deletion of constraints [Helm et al., 1992a, Maloney 
et al., 1990]. 

• the ability to detect causes of unsatisfiability for debugging inconsistent sys
tems of constraints [Helm et aI., 1992a)' 

• semantic feedback during direct manipulation to indicate valid ranges for 
variables and movements of objects [Hudson, 1990]. 

• graceful handling of under constrained systems [Maloney et aI., 1989, Freeman
Benson, 1990). 

Drawing packages, CAD systems, application builders, and diagrammatic editors 
are representative of a class of applications that could benefit particularly from con
straints. These direct-manipulation graphics editors let a user manipulate visual 
manifestations of familiar objects to convey information in a domain, and they are 
usually responsible for maintaining spatial and semantic relationships between 
objects. Constraints are a natural way to specify these relationships and to ensure 
their maintenance. Responsibility can thus be transferred from the user to the 
constraint system, freeing the user to focus on more creative aspects of his task. 

Yet few graphical editing systems employ constraints to any degree; those that 
do are research prototypes [Bier and Stone, 1986, Nelson, 1985, Borning, 1981, 
Sutherland, 1963]. Perhaps one reason is that graphical editors are notoriously dif
ficult to implement, even with conventional user interface toolkits. Several frame
works for building graphical editors have been reported recently [Tarumi et aI., 
1990, GECK, 1990, Vlissides and Linton, 1990] that address this problem. These 
frameworks provide a generic software architecture that typically supports the 
following: 

• the definition of domain-specific graphical components and their semantics 

• mechanisms for composing and structuring components 

• (reversible) operations on components 

• specialized direct manipulation techniques 

• persistence and externalization of application data 

Experience with graphical editing frameworks [Vlissides, 1990] has shown that 
they simplify editor development for different domains compared with traditional 
user interface toolkits, which support only the controlling elements of an application 
(e.g., buttons, scroll bars, and menus). Unfortunately, current frameworks take little 
or no advantage of the power of constraints. This deficiency reflects the fact that 
constraint capabilities are absent from most hand-built graphics editors. Therefore 
combining the capabilities of a graphical editing framework with a general-purpose 
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constraint system can make domain-specific, constraint-based graphical editing 
systems far simpler to develop. 

Integrating graphical editing frameworks and constraint systems raises new issues 
and challenges. Some problems stem from the nature of constraint-based editing 
in a highly interactive environment: every component may be constrained, and the 
entire constraint system may need to be re-solved on every input event (e.g., mouse 
motion). Other problems concern the integration itself: constraints can be so basic 
to the operation of framework objects but so closely coupled with the constraint 
system that integrating them requires a rewrite of the framework, the constraint 
system, or both. Consequently, the integration strategy requires a careful design 
and implementation effort to minimize modifications to the existing systems. 

This paper presents an architecture for constraint-based, direct-manipulation graph 
ical editing that addresses these issues. The architecture integrates Unidraw [Vlis
sides and Linton, 1990] a graphical editing framework developed at Stanford Uni
versity, and QOCA (Quadratic Optimization Constraint Architecture), a new object
oriented constraint-solving toolkit developed at ruM Research. Unidraw is an es
tablished graphical editing framework that already has limited constraint-solving 
capabilities. QOCA leverages recent results in symbolic computation and geometry 
to support efficient incremental and interactive constraint manipulation. Our goal 
is to combine these systems to provide a generic and easily extended architecture 
for constraint-based, direct-manipulation graphical editing. 

This paper offers an overview of the integrated architecture and its subsystems. 
We begin by presenting examples of constraint-based editing that demonstrate the 
power and desirability of this paradigm in general and the advanced capabilities 
of QOCA in particular. Then we describe the Unidraw framework and how we 
integrated it with QOCA toolkit objects to allow constraint specification. Next we 
provide details of the QOCA implementation and the algorithms on which it is 
based. We conclude the paper with a summary of the architecture and discussion 
offuture directions for this work. 

2 Sample Applications 

QOCA is an extensible constraint solving toolkit that supports incremental solving 
of simultaneous (in)equations and optimizes convex quadratic objective functions. 
QOCA also supports new kinds of constraint manipulation that have novel appli
cations to graphical editing. The following examples illustrate how graphical user 
interfaces can benefit from this technology, both in implementing commonplace 
functionality and in providing new, constraint-based capabilities. 

2.1 Graphical Connectivity 

A simple application of constraints in user interfaces is to maintain connectivity 
between graphical objects. The top of Figure 1 depicts rectangle objects A and C 
and an arrowheaded line B. We wish to link the rectangles with the line so that the 
arrows and rectangles abut regardless of their relative positions, as shown at the 
bottom of the figure. 
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Figure 1: Boxes-and-arrows connectivity 

To ensure that the endpoints of the arrows remain inside the rectangles, we begin 
by specifYing the inequality constraints 

over the variables defining the rectangles and line. These constraints are insuffi
cient, however, because they do not guarantee that the arrowheads and rectangles 
abut properly. We can express these semantics as an optimization problem that 
minimizes the arrowheaded line's length: 

minimize((lB - rB)2 + (bB - tB)2) 

This expression, called an objective function, ensures that the line assumes the 
shortest distance between the rectangles, Objective functions are distinct from con
straints: an objective function can only affect an underconstrained system, During 
constraint solving, therefore, QOCA will assign values to variables that minimize 
the objective functions, As the line's endpoints are constrained by the inequali
ties and governed by this objective function, the line will reorient and deform to 
accommodate the desired optimization. 

2.2 Underconstrained Systems 

So far we have used an objective function to specify an explicit design criterion: 
that the arrowheads and rectangles should abut. Less obvious is the need to clarify 
what happens when the user moves a rectangle, say rectangle A. Rectangle C may 
remain stationary and the line may stretch, for example, or the line may stay a 
fixed size while C moves the same distance as A. Without specifying a preference, 
either scenario is plausible; the system is underconstrained. 

Handling underconstrained systems is a classic problem in constraint satisfaction. 
Stated generally, a constraint system must have a way to determine values for 
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variables that are not constrained to take unique values. Requiring precisely con
strained systems-that is, neither over- nor underconstrained-places too much 
responsibility on the user to create potentially complex yet error-free constraint 
specifications. 

One way to deal with this problem is with constraint hierarchies [Borning et al., 
1989], in which lower priority constraints express default behavior. The constraint 
solver selects (either arbitrarily or via comparators) non-required constraints to 
include in the solution. The primary difficulty with constraint hierarchies is in 
defining appropriate hierarchies (and comparators) so that, as constraints and 
defaults from different parts of the hierarchy are selected, the resultant solutions 
are continuous with respect to each other. 

In contrast, the process of minimizing objective functions effectively selects values 
for underconstrained variables. The key idea is to continually refine the objective 
functions during direct manipulation so that new solutions are always as close as 
possible to the old. The objective functions provide a declarative way to express 
exactly what "closeness" means. 

Returning to our connectivity example, we can make the system behave predictably 
when a rectangle is moved by introducing additional objective functions. Suppose 
we require that the rectangles deform and move as little as possible during direct 
manipulation. This requirement is captured via the objective functions 

minimize( (IA -IOA)2 + (bA - bOA? + (r A - rOA)2 + (tA - tOA? ) 

and 
minimize( (Ie -loe)2 + (be - boe )2 + (re - roe)2 + (te - toe)2 ), 

which state that the new values for the variables defining the rectangles (lA, r A, ... , 
Ie, re, ... ) should remain as close as possible to their current values given by the 
constants (lOA, rOA, ... , loe, roe, ... ). By updating these constants at the start of each 
direct manipulation, we ensure that the rectangles will be deformed no more than 
necessary (and typically not at all). 

Through objective functions, QOCA supports the "Principle of Least Astonishment": 
it guarantees that the rectangles will move as little as possible should the system 
ever be underconstrained. Moreover, because solutions are selected via objective 
functions, which are continuous, solutions generated by the solver during direct 
manipulation are likewise continuous with respect to each other. The system will 
not generate sudden discontinuous jumps between solutions. 

2.3 Constrained Layout 

Simultaneous linear constraints are a convenient way to express graphical layout. 
For example, Figure 2 graphically depicts cOnstraints that left-align three small 
boxes and center the topmost small box horizontally in the surrounding box. Ver
tical constraints provide whitespace between the boxes and the surrounding box, 
ensuring that it is large enough to contain the smaller boxes. 

Given that the dimensions of the surrounding box are W x H and the dimensions 
of the top most box are w x h, the constraints that capture this layout are: 

3h + 2Yi + 2}2 = H, 2Xl+W=W, 
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Figure 2: Example layout 

These constraints form a system of simultaneous linear equations in three un
knowns, thereby demonstrating the need for a constraint solver that can solve 
simultaneous linear equations. In general, a constraint solver based on local prop
agation is not adequate whenever constraints express a dependency between the x 
and y dimensions. 

Objective functions add even more power as they can express layout in terms of a 
"spring" metaphor, in which layouts can deform in precise and intuitive ways. The 
objective function measures the potential energy of a particular configuration, and 
the best layout is the one that minimizes this potential. 

More formally, a spring S is specified by its minimum length Lmin> its rest length 
L rest , its maximal length L m • x , and its energy coefficients when compressed Ecomp 

and stretched E str . Letting x be the extent of S, x must obey the constraints Lmin :::; 

x :::; Lmax , and the energy of Sis: 

( ) _ { Ecomp( L rest - x) if Lmin :::; x :::; L rest ; 

e x - Estr(x _ L rest ) if L rest :::; x :::; Lmax. 

As the acronym suggests, QOCA is designed to solve quadratic optimization prob
lems. At first glance it is not clear that minimization of e can be handled by our 
system, because it is piecewise-linear rather than quadratic. However, we can trans
form this into a quadratic optimization problem (actually a linear optimization 
problem) by introducing two new variables: Xcomp , the amount the spring is com
pressed, and Xstn the amount the spring is stretched. The associated constraints 
are 

x comp ~ 0, Xstr ~ 0, x == Lrest - Xcomp + Xstr 

and the energy of S is given by 

Now for all Lmin :::; x :::; L max , the minimum value of e'(x, Xcomp , Xstr) is the same as 
that of e(x)-the minimum value of e' occurs when both X comp or Xst~ is zero. Thus 
the two problems have the same solution. 

2.4 Diagnosing Anomalies 

One of the problems with declarative specifications in general and constraints in 
particular is that it can be difficult to ascertain the cause of unexpected behavior. 
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Figure 3: Dialog box with horizontal spring constraints superimposed 
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Figure 4: Resized dialog box with incorrect layout behavior 

The larger the set of constraints, the more likely it is that the system is either 
over- or underconstrained, inconsistent, or otherwise at odds with desired seman
tics. Any system that supports nontrivial constraint specifications should also offer 
mechanisms for diagnosing anomalous behavior. 

For example, consider interactive layout in a user interface builder. The dialog 
box in Figure 3 consists of check boxes and radio buttons aligned with spring 
constraints (arrows) and an alignment constraint (dashed vertical line). The builder 
is displaying only horizontal constraints for simplicity. 

Now the interface designer would like the whitespace in between and around the 
buttons to grow and shrink equally as the dialog is resized. When the designer 
resizes the dialog, however, the radio buttons stay a fixed distance away from the 
right edge (Figure 4). To diagnose this problem, the builder can use the constraint 
system to determine the causes of unsatisfiability. 

A natural interface to this functionality would let the user try to move a misplaced 
object. Then the system can provide feedback to help explain why the object cannot 
occupy its proper place. QOCA supports this diagnosis by providing primitive oper
ations for testing the satisfiability of constraints and detecting the causes of their 
unsatisfiability. 

In Figure 5 the user is trying to move one of the misplaced radio buttons. The 
system responds by displaying graphically the constraints that keep the button 

~Widow control: 

~Orphan control: 

Figure 5: Diagnosing incorrect layout behavior 
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L8!Widow control: 

L8!Orphan control: 

Figure 6: Corrected layout behavior 
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from moving: the left-alignment constraint and the spring to the right of the sec
ond "sometimes" radio button. This suggests to the user that a spring constant is 
incorrect. When he examines the spring's attributes he discovers that its spring 
constant is zero when it should be identical to that of the other springs. The user 
can then modify this constant in the builder, and the resulting interface exhibits 
the proper resize semantics (Figure 6). 

3 Unidraw Framework Integration 

Unidraw is an object-oriented framework for building direct-manipulation graph
ical editors. It is a part of InterViews [Linton et al., 1989], a comprehensive set of 
programming abstractions and tools for the design and implementation ofworksta
tion applications. Unidraw partitions the common functionality of graphical editors 
into four major class hierarchies: 

1. Components represent the elements in a graphical editing domain, for ex
ample, geometric shapes in technical drawing, schematics of electronic parts 
in circuit layout, and notes in written music. Components encapsulate the 
appearance and semantics of these elements. The user arranges components 
to convey information in the domain of interest. 

2. Tools support direct manipulation of components. Tools employ animation 
and other visual effects for immediate feedback to reinforce the user's percep
tion that he is dealing with real objects. Examples include tools for selecting 
components for subsequent editing, for applying coordinate transformations 
such as translation and rotation, and for connecting components. 

3. Commands define operations on components. Commands are similar to mes
sages in traditional object-oriented systems in that components can receive 
and respond to them. Commands can also be executed in isolation to perform 
arbitrary computation, and they can reverse the effects of such execution to 
support undo. Examples include commands for changing the attributes of a 
component, duplicating a component, and grouping several components into 
a composite component. 

4. External representations define a one-way mapping between components 
and their representation in an outside format. For example, a transistor com
ponent can define both a PostScript representation for printing and a netlist 
representation for circuit simulation; each is generated by a different class of 
external representation. 
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Partitioning editor functionality into components, commands, tools, and external 
representations is the foundation of the Unidraw architecture. We will introduce 
additional Unidraw classes as t.hey become relevant. 

3.1 Basic Integration 

The obvious application of QOCA in Unidraw was as a replacement for Unidraw's 
special-purpose geometric constraint solver, which enforces connectivity semantics 
between components. However, making QOCA's full power available to the Unidraw 
programmer adds a new dimension to the framework's capabilities-support for 
constraint-based graphical editing. In this section we discuss several key aspects 
of the integration of these two systems. 

Unidraw can leverage constraints in two ways: (1) constraints can define attributes 
of new user-defined components, for example, to define the center point of a rectan
gle in terms of its corners; and (2) constraints can appear as graphical components 
to be manipulated in their own right. Before describing how this is done in Unidraw, 
we must first consider how to specify constraints in QOCA. 

Expressing Constraints in QOCA 

QOCA makes constraints, objective functions, and variables first class objects, and 
it provides a natural syntax to define these objects directly in the programming 
language, in this case C++. QOCA defines constraints and variables using the 
arithmetic and relational operators of C++. This requires heavily overloading these 
operators, but the result is a natural syntax for declaring constraints. 

The following example, written in C++, captures the relationship between temper
ature scales in Fahrenheit, Celsius, and Kelvin as constraints over variables repre
senting these quantities. It makes use of three classes, CVariable, Constant, and 
Constraint. 

CVariable fahr, cent, kelv; 
Constant Freezing = 32.0; 
Constant AbsoluteZero -273.13; 

Constraint cl 
Constraint c2 

fahr - Freezing == cent * 1.8; 
cent == kelv + AbsoluteZero; 

Constraints are added to the system merely by instantiating constraint objects. 
QOCA ensures that the values of CVariable objects adhere to the constraint spec
ification. Through operator overloading, QOCA evaluates the expressions in the 
constraints and returns instances of class Expression. Expressions are objects 
that capture the abstract syntax tree of the expressions in the constraint. These 
structures can be then assigned as in the case above or can be manipUlated sym
bolically by other objects. 

Objective functions define expressions to be minimized or maximized. In this exam
ple, suppose we want to minimize the difference between the variable representing 
Fahrenheit and freezing. 
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We can express this requirement with an instance of class Objective: 

Objective 0 = Minimize(fahr*fahr - 2*fahr*Freezing + 
Freezing*Freezing) ; 

Minimize is a function that takes an Expression as an argument and returns an 
instance of class Objective. The Objective object 0 establishes an objective function 
that QOCA must consider in solving the constraint system. 

It is often necessary to assign values to the variables and then have these values 
automatically propagate to the constrained variables via the constraint solving 
class ConstraintSolver. But the allowed values of CVariables are governed by 
Constraint and Objective objects. Consequently, assigning a value to a variable is 
not a direct assignment-the assigned value may be inconsistent with some con
straints or may not satisfY some objective. Instead QOCA treats an assignment to a 
variable as a request that the CVariable take that value. Only when the constraint 
system is solved are the requested values considered. Then the solver propagates 
computed values back to the variables, notifYing them that they have changed. In 
solving the constraints, the requested values act as parameters to the system, and 
all other variables will depend on them. Thus we can write 

cent = 95; 

and the solver will assign the correct values to fahr and kel v whenever the Solve 
method (i.e., ConstraintSol ver: : Solve) is called. 

The classes CVariable, Constant, Constraint, Objective, and ConstraintSolver are 
the primary base classes visible to users in QOCA, and they do not depend on 
Unidraw in any way. Additional classes integrate QOCA and Unidraw without 
compromising their independence, as we demonstrate in subsequent sections. 

Constraint State Variables 

CVariable objects playa central role in the specification of constraints. Clearly if 
Unidraw is to support general constraint specification, it must surface CVariable to 
the users of the framework. Complicating the issue is Unidraw's notion of a state 
variable. State variables are persistent values that can define a graphical user 
interface for viewing and modification, and they can change automatically through 
Unidraw's support for dataflow. Components commonly have one or more state 
variables that store user-accessible state. For example, an inverter component in a 
schematic capture system may use state variables to define the logic levels at its 
input and output terminals. 

State variables thus play some of the same roles as constraint variables, and vice 
versa. To avoid introducing dependencies between Unidraw and QOCA, we derive 
a new class, constrained state variable, or CSVar, from both the StateVar state 
variable base class and from CVariable. CSVar inherits both the constraint se
mantics of CVariable and the persistence and other Unidraw-oriented aspects of 
StateVars without introducing dependencies between the base classes. 

The mechanism for keeping CSVars consistent with the constraint system builds 
upon both the QOCA and Unidraw architectures. Ordinary CVariables receive re
quests for change. Later they have their values updated in one pass via 
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ConstraintSol ver: : Sol ve. However, Unidraw programs do not call this opera
tion directly. Unidraw already defines a global Update operation that synchronizes 
the application and the state of its constituent objects, which may involve solving 
connectivity constraints, repainting the screen, and so on. We simply extended this 
operation to invoke Solve on the constraint solver. 

CSVars have the added need to notify their enclosing component (if any) whenever 
they change. Therefore the CSVar class adds protocol for associating one or more 
components with an instance. CSVar also extends CVariable's Update operation to 
notify its associated components of a change in its value. 

3.2 Constraining Components 

To place constraints on components, variables that represent attributes of com
ponents must be defined in terms of CSVars. This lets us establish constraints 
between an object's internal values (i.e., internal constraints) and across objects 
(external constraints). 

Internal constraints simplify a component's definition. Code previously required to 
maintain relationships between member variables is now delegated to the solver 
through the constraints. Internal constraints also simplify alternate definitions of 
objects. For example a rectangle can be defined by a center point and one corner or 
by opposite corners. Consider the class Constrained.RectComp: 

class ConstrainedRectComp : public Component { 
CSVar _left, _right, _centerx; 
CSVar _top, _bottom, _centery; 
Constraint _Xconstraint, _Yconstraint; 

} ; 

ConstrainedRectComp: :ConstrainedRectComp () { 
_Xconstraint _left + _right 2.0 * _centerx; 
_Yconstraint = _top + _bottom == 2.0 * _centery; 

This class defines six member CSVars representing its opposing corner points and 
its center. Note how internal constraints in the constructor define the center point 
in terms of its corners. 

To present constraints graphically as components, we derive a new base class of 
graphical component called ConstraintComp, which defines an appearance and 
manipulation semantics for constraints. Derived classes add semantics for partic
ular constraints. For example, the derived class PointEqualityComp takes two 
pairs of CSVars representing two points and establishes an equality, constraint 
between them: 

class PointEqualityComp : public ConstraintComp { 
public: 

PointEqualityComp(CSVar&, CSVar&, CSVar&, CSVar&); 

private: 
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Constraint _XConstraint, _YConstraint; 
} ; 

PointEqualityComp::PointEqualityComp 

) { 

CSVar& xl, CSVar& x2, CSVar& yl, CSVar& y2 

_XConstraint 
_YConstraint 

In general, graphical components in Unidraw use structured graphics objects [Vlis
sides and Linton, 1988] to depict themselves graphically. PointEqualityComp main
tains a structured graphic object to present its constraint to the user in an intuitive 
manner. 

ConstraintComp objects are often constructed by tools that query components for 
their CSVars using Unidraw's interpreted command mechanism. The tool provides 
the appropriate direct manipulation semantics, such as dragging or stretching a 
line between two points. Once a tool has obtained the required CSVars, it returns a 
command that pastes the component into the drawing and establishes the proper 
external constraints. 

For example, the tool that creates an EqualityPointComp between two points asks 
the two components containing these points to return the appropriate CSVar ob
jects. Then it instantiates an EqualityPointComp, passing the CSVars to the con
structor. Finally, it returns a PasteCmd object containing the new instance. Later 
in the paper we discuss in more detail how we exploit Unidraw's direct manipula
tion model to involve constraint solving and how undoable commands containing 
constraints work. 

3.3 Supporting Undo/Redo 

In integrating QOCA and Unidraw, it is important to retain full undo and redo 
capabilities. Two semantics are essential: 

1. Constraints and optimization functions can exist without affecting the con
straint system. 

2. The constraint system can be queried for its current state, and it can revert 
to exactly that state at an arbitrary point in the future. 

Enabling and Disabling 

The first semantics implies that an instantiated constraint or objective does not 
necessarily affect the behavior of the system: only an enabled constraint or objective 
may have an affect. This is relevant to the undo model in that structural changes 
to the system may have to be undone. 

For example, suppose the user deletes the right-hand rectangle in Figure 9. In 
standard Unidraw this would be accomplished via a DeleteCmd, which removes 
the component being deleted from its enclosing structure but does not destroy it. 
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Figure 7: Hysteresis in underconstrained systems 

Instead, the command stores both the component and its position in the structure. 
If the DeleteCmd is later undone, it reinserts the component in the structure at the 
proper place. It is far easier and cheaper to save the component than to reconstruct 
it, since a component can be arbitrarily complex. 

Similarly, it is better to disable and enable constraints and objectives than it is to 
destroy and recreate them. When the constrained rectangle is removed, it disables 
all the constraints and objectives that affect its CSVars; ifit is subsequently pasted 
or reinserted into the display, it simply enables them again. 

The Constraint class in QOCA provides protocol for enabling and disabling its in
stances. The ability to switch constraints on and off at will is one of the novel 
features of QOCA and is intrinsic to supporting undo/redo semantics. It requires 
efficient incremental addition and deletion of constraints. No other constraint solv
ing system that we know of provides this capability for the class of constraints that 
QOCA solves. 

Saving and Restoring System State 

The second semantics ensures that the editor does not suffer from hysteresis or 
round-off errors as operations are undone and redone. There is no guarantee, for 
example, that undoing a state-changing operation (such as a move) by performing 
the inverse operation will return the system to exactly the original state. Round-off 
errors can accumulate even in ostensibly well-behaved systems. 

Hysteresis can occur in underconstrained systems as constraints are added and 
deleted. Consider the scenario in Figure 7. The endpoints of two lines are con
strained to coincide via an equality constraint, which is subsequently removed. 
Because the lines are underconstrained, the top portion of stage 3 is a valid con
figuration. However, to support undo and redo, the display must be restored to the 
configuration at the bottom of stage 3; otherwise unpredictable results will occur 
as the user performs additional undo commands. ' 

To ensure stability, state-changing commands query the constraint engine for So
lution objects both before and after they carry out their operations. A Solution 
object captures the state of the constraint solver at a particular instant. On undo, 
these commands then direct the constraint engine to adopt the original (i.e., pre
execution) solution. On redo, they set the post-execution solution. The constraint 
system computes the same values after arbitrarily many undo and redo operations. 
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Figure 8: Basic direct manipulation sequence 

3.4 Constraining Direct Manipulation 

It is important to enforce constraints and to see their effects during direct ma
nipulation. Otherwise, the result of the manipulation may not correspond to the 
feedback provided. For example, a drawing editor may let a user stretch an un
constrained rectangle arbitrarily. But a rectangle that is constrained to be square 
should stay that way as it is stretched, thereby reflecting the constraint in the 
manipulation. This section summarizes Unidraw's direct manipulation model and 
how it is integrated with QOCA to support constrained direct manipulation. 

Unidraw Direct Manipulation Model 

Tools are fundamental to Unidraw's direct manipulation model. The user grasps 
and wields a tool to achieve a desired effect. The effect may involve a change in 
component or other application object state, or it may change the way components 
are viewed, or there may be no effect at all (if, for example, the tool is used in an 
inappropriate context). Most tools generate animated effects as they are wielded to 
provide semantic feedback to the user. 

Tools employ Manipulator objects and commands to handle the mechanics of the 
direct manipulation and enact its outcome. A manipulator abstracts and encapsu
lates the code that generates semantic feedback. Manipulator provides a standard 
interface to an abstract state machine that defines interaction semantics. Com
mands actually carry out the intent of the manipulation and permit its undoing 
and redoing. 

Figure 8 depicts the four basic stages of a direct manipulation: 

1. The active tool receives a CreateManipulator message from the framework 
in response to user input. The tool creates an appropriate manipulator and 
returns it to the framework. 

2. The framework exercises the manipulator in response to user input: 

(a) Grasp instructs the manipulator to prepare to generate semantic feed-
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Figure 9: Animation produced by CDragManip: :Manipulating 

back. In response, the manipulator typically initializes internal state 
associated with the ensuing animation. 

(b) The framework issues Manipulating messages repeatedly in response to 
user input until the manipulator indicates that manipulation has ceased. 
Each call to Manipulating usually generates a new frame of animation. 

(c) Effect instructs the manipulator to finalize its internal state following 
the direct manipulation. 

3. The framework asks the active tool to interpret the manipulator it had created 
via the InterpretManipulator message. The manipulator returns a command 
in response. 

4. The framework executes the command to carry out the user's intent. 

This discussion omits many details of Unidraw's direct manipulation model to 
focus on the parts that relate directly to its interplay with QOCA. See [Vlissides 
and Linton, 1990] for more detail. 

Integrating Constraints 

To enforce constraints during direct manipulation, Unidraw may solve the con
straint system on every input event. The state of the system thus changes before 
manipulator interpretation at stage 3 above. This contrasts with interactions that 
do not involve constraints, wherein the application is affected only after manipula
tion has ended. 

Consider the boxes-and-arrows connectivity example from Section 2.1. Figure 9 
depicts three frames of animation produced when the user moves the right-hand 
rectangle with a MoveTool. In this case, each frame is generated by a call to Manip
ulating on an instance of CDragManip (short for "constrained drag manipulator"), 
the manipulator that the MoveTool created. MoveTool initializes the CDragManip 
with the CSVars that define the lower-left and upper-right corners of the rectangle 
being moved. 

CDragManip's Grasp operation records the current values of the system's CSVars in 
a Solution object. Each subsequent call to Manipulating generates a frame of anima
tion: CDragManip requests changes to the rectangle's CSVar values each time the 
cursor moves during manipulation. Then CDragManip calls unidraw: :Update, 
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which solves the constraint system and updates the display. Unidraw thus main
tains the connectivity constraints during direct manipulation simply by treating 
each frame of the animation as an incremental change to the constraint system. 

QOCA's incremental parametric constraint solver performs each step of the manip
ulation efficiently. It treats the variables being manipulated (that is, those that re
ceive requests to change value in the call to Manipulating) as parameters. The solver 
minimizes the manipulation of the constraints by solving parametric quadratic op
timization problems incrementally. Most often it computes new values of variables 
that depend on the parameters directly-constraint manipulation occurs relatively 
infrequently. 

A subtle point in this strategy concerns when to change the objective functions 
to reflect the rectangle's final position. Recall that the system includes objective 
functions (expressed via Objective objects) that minimize the distance between the 
rectangle's initial and final positions. After manipulation it is necessary to adjust 
the constants appearing in these objectives to make their values correspond to the 
new position. 

We refer to this process as leapfrogging the objective functions at the end of 
each manipulation step to catch up to the current values of the CSVars they effect. 
This adjustment takes place in the command that records the overall effect of 
the direct manipulation. When the framework issues the InterpretManipulator 
message (passing the CDragManip as an argument) to the MoveTool, it responds 
by producing a CMoveCmd, or "constrained move command." This command's 
purpose is twofold: (1) to adjust the rectangle component's objectives, and (2) to 
provide a record of the manipulation should it be undone or redone later. If the 
command is undone (or redone), CMoveCmd moves the rectangle back to its original 
position (or to its new position) and adjusts the rectangle's objectives accordingly. 

4 QOCA Internals 

4.1 Architectural Overview 

QOCA has the four main components illustrated in Figure 10: 

1. A solver, which adds or deletes constraints while incrementally maintaining 
the solved form. The test for satisfiability is a byproduct of maintaining the 
solved form. 

2. A detector, which takes a constraint that is inconsistent with the current 
constraints and identifies sources of the inconsistency. 

3. A projector, which takes a set of variables and projects tl;1e current con
straints onto those variables. 

4. An optimizer, which recomputes the current solution given requested values 
for parameters. It finds values for non-parametric variables that both satisfy 
the constraints and minimize the optimization problems. 

In addition, QOCA maintains a record of the current constraints and the current 
optimization function. It also maintains a current solution, the assignment 
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Figure 10: QOCA architecture 

of variables that satisfies the current constraints and minimizes the current opti
mization function. 

QOCRs architecture is designed to be flexible. It permits experimentation with 
different classes of constraints and domains (e.g., reals, booleans, etc.), different 
constraint solving algorithms for these domains, and different representations for 
objects in these domains. QOCRs object-oriented design allows parts of the system 
to be varied independently of others. For example, real numbers, currently repre
sented as doubles, can be changed to infinite precision or rational representations 
simply by changing the definition of a single class. 

Moreover, as improved algorithms and solvers are developed, existing algorithms 
can be replaced with minimal disturbance. This modularity highlights an advantage 
of using global constraint solvers such as QOCA. Systems that employ local propa
gation [Maloney et aI., 1989, Myers et al., 1990] often distribute constraint solving 
methods throughout the system, relegating to each object the responsibility to solve 
its own constraints. This makes it difficult to exploit efficient representations and 
constraint solving algorithms in these systems. 

4.2 Implementation 

Here we describe briefly the algorithms and techniques used in the constraint 
system. A complete description of QOCA is forthcoming [Helm et al., 1992b], and 
preliminary performance measurements have already been reported [Helm et al., 
1992a]. 

QOCA leverages the well-developed theory and efficient algorithms that have been 
investigated extensively in operations research for handling linear constraints. 
The Simplex algorithm is the key technique used in the system. The Simplex is an 
efficient symbolic manipulation technique for testing satisfiability and for optimiz
ing linear constraints. QOCA also takes advantage of new results from symbolic 
computation, both for efficient representation of constraints and in incremental al
gorithms for constraint manipulation. QOCA currently supports linear arithmetic 



www.manaraa.com

234 Richard Helm, Tien Huynh, Kim Marriott, and John Vlissides 

constraints, that is, linear equalities and inequalities over the real numbers, and 
the optimization of convex quadratic functions. 

Normal Form 

Almost all constraint manipulation in QOCA is on the normal form of the current 
constraints. The normal form is essentially a compiled non-redundant represen
tation of the constraints in which as many variables as possible are eliminated. 
Elsewhere [Helm et aI., 1992a] we discuss in detail some of the ramifications of 
normal forms for constraint solving. Briefly, the normal form is constructed as 
follows. Assume that we have a set of linear equalities and inequalities over the 
variables Xl, ..• , Xn • We can rewrite them into a set of equalities by replacing each 
inequality 

by 
alXl + a2X2 + ... + anXn + s = b 

where s is a distinct new slack variable and s ~ O. The normal form of this 
rewritten set is obtained by eliminating as many of the original variables Xl, "', Xn 

as possible using Gauss-Jordan elimination. The remaining equations will contain 
only slack variables. These equations are collected, and the Simplex algorithm is 
used to find their feasible basic form. Thus the normal form consists of two sets 
of equalities. The first set, called the defining equations, contains the equations 
used to eliminate the original variables Xl, ... , x n • The second set, called the slack 
equations is a basic form of the equations in slack variables. 

In practice we do not explicitly compute the normal form of a constraint set C. 
Rather, we represent the normal form implicitly as the product MG, where Mis 
an invertible matrix called the quasi-inverse. M is essentially the product of the 
elementary row operations used to compute a normal form from C. One advantage 
of this implicit representation is that M is smaller than C, which means performing 
a pivot on M is cheaper than performing one on C. 

Adding and Deleting Constraints 

The main advantage of the quasi-inverse representation, however, is that M cap
tures how the original constraints were used to obtain the solved form. This lets the 
solver (re)compute a normal form efficiently when a constraint is deleted. We han
dle the addition of constraints and incremental computation of a new normal form 
with standard techniques in sensitivity analysis [Murty, 1988]. The expected cost 
is proportional to the cost of one pivot in M. In fact, we use the Dual Simplex, and 
so adding a constraint has in the worst-case exponential complexity. In practice, 
however, the Simplex algorithm has incremental cost proportional to the number 
of constraints added. In fact, the Simplex is routinely used in problems with many 
millions of constraints, and it is often preferred to the more complex interior point 
methods that have polynomial worst-case complexity. The actual cost of this pivot 
depends on the representation of M, With a non-sparse representation, the actual 
cost is O(n2 ), where n is the number of original constraints. The cost should be 
significantly less with a representation that preserves the sparseness in the origi
nal system. At present, however, the system uses a non-sparse representation for 
simplicity. 
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Causes of Unsatisfiability 

Each time a constraint is added to the solver, it is first simplified using the 
defining equations. If the new constraint becomes a contradiction after the sim
plification, the causes of the unsatisfiability can be traced back immediately us
ing the quasi-inverse-indices of the non-zero elements in the row of the quasi
inverse corresponding to the new constraint indicate the constraints that contra
dict it. When the simplified constraint contains only slack variables, it is added 
into the slack equations; then the Simplex is activated to solve the system. If 
this system is infeasible, one can apply the technique proposed by Gleeson and 
Ryan [Gleeson and Ryan, 1990] to identify the minimally infeasible subsystems 
and hence decide which constraints should be removed to obtain feasibility. 

It follows from the construction of the normal form that the number of slack equa
tions is less than or equal to the number of inequalities in the original system. 
This is critical because (except for constraint deletion and addition) all operations 
in the constraint system have cost proportional to the number of slack equations 
rather than the size of the original system. The defining equations are only used 
to transform solutions in terms of the slack variables to solutions in terms of the 
original variables. 

Projection 

Given a set of variables to project on, the projector first combines the defining equa
tions for these variables with all the slack equations. Then a projection algorithm 
computes the actual projection. Since the projection space is assumed to be small, 
we use a projection algorithm called the Convex Hull Method [Lassez and Lassez, 
to appear], which is based on a geometric approach. For small projection spaces, it 
is much faster than other projection algorithms based on algebraic manipulation. It 
uses the Simplex algorithm repeatedly to compute the convex hull of the projected 
constraints. 

Quadratic Optimization 

The algorithm used for optimizing convex quadratic functions is a variant of the 
Simplex algorithm; see Murty [Murty, 1988] for details. When a new constraint 
is added, the optimization problem is (re)solved to find the new solution. During 
direct manipulation, however, a sequence of very similar optimization problems 
are solved in which the values of parameters change only slightly. In this case we 
solve the optimization problem incrementally, making use of the basis of the last 
solution as the starting basis for the new optimization. If the parametric values are 
sufficiently close, the cost of each optimization is expected to be one pivot on the 
slack equations. In fact, during direct manipulation we often know that the optimal 
solution for the initial parameter values is just the current solution. This means 
that the initial basis can be constructed efficiently, since we know which variables 
are basic. 

To our knowledge, optimization functions are a new technique for handling un
derconstrained systems in user interface applications. This approach is related to 
Witkin's system for graphical animation [Witkin et aI., 1990], which uses functions 
to define the total energy of a system. In this system a global solver tries to minimize 
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the total energy during manipulation to control the movement of graphical objects. 
Our constraint toolkit can be viewed as combining an energy model approach and 
pure constraints. 

5 Conclusion 

Basic constraint technology has matured to the point that highly interactive ap
plications can incorporate constraints in both their interface and their implemen
tation. Concurrently, advances in reusable user interface frameworks have made 
graphical editing systems easier to implement. Our work has focused on combining 
these developments to create a powerful, object-oriented architecture for constraint
based graphical editing. 

We have integrated QOCA, an extensible constraint system, with U nidraw, a frame
work for building direct-manipulation graphical editors. Critical to QOCA's effec
tiveness in supporting constraints in Unidraw-based applications are its ability 
to solve simultaneous equations and inequations, optimize convex quadratic ob
jective functions, incrementally add and delete constraints, incrementally re-solve 
parametric quadratic optimization problems, and detect causes of unsatisfiability 
in inconsistent constraints. An important goal of the integration was to avoid com
promising existing Unidraw capabilities such as its direct-manipulation model and 
unlimited undo/redo. QOCA's powerful linear arithmetic constraints, constraint ma
nipulation techniques, and sound theoretical foundation make QOCA an advanced 
platform for interactive constraint-based editors. 

We plan to use QOCA extensively in the future. One project will extend key glyphs 
in InterViews, such as trays and glue, to be implemented in terms of QOCA con
straints. QOCA will also serve as a basic element in our pen-based visual language 
parsing system [Helm et al., 1991]. We will continue research into new algorithms 
for manipulating constraints, QOCA being a good vehicle for exploring new al
gorithms. We also hope to make QOCA freely available, thereby promoting more 
widespread applications for constraints. 
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Graphics Object-Oriented Platform for 

Euclidean Geometry Computations 

John R. Rankin 

Recent object-oriented programming languages are enabling the top level code in applica
tion programs to resemble more closely the form of the mathematical expressions that the 
program is meant to be implementing. This facility is very useful for non-programmers, and 
mathematicians and geometers who are not interested in the fine syntactic details of computer 
programming languages. This paper describes an object-oriented platform that makes it easier 
for non-professional programmers to implement and test concepts from standard Euclidean ge
ometry on a computer graphics screen. The idea is that this platform enables one to construct 
and test geometric hypotheses and theorems in a language closely resembling the way Euclid 
and traditional geometry expresses geometric concepts, symbols and theorems. Although the 
language used by Euclid for geometry is precise it also includes the contextual facilities of 
natural languages saveing one from having to spell out every characteristic and attribute in de
tail. It is this demand for completeness in specifying details that has made standard computer 
programming languages laborious and tedious to deal with. The graphics object-oriented plat
form described in this paper incorporates the facility for handling incompleteness in a natural 
and visually acceptable way. Additionally the platform incorporates constraint resolution by an 
improved iteration technique. Finally, the platform contains the hierarchy of geometrical shapes 
to which the geometer needs immediate access. Here it is pOinted out that the object-oriented 
programming object hierarchy is properly the inverse of the conceptual geometrical hierarchy 
of shapes. 

1 Introduction 

Traditional high level programming languages, while providing powerl'ul features 
for improved programming, have still left a very wide gap between themselves and 
natural languages. This means that programming still remains the domain of the 
computer software expert. The need to make computer programming more acces
sible to the general public is an on-going one, and from this thrust we have newer 
and newer programming languages and versions of earlier programming languages 
continually forthcoming. The new paradigm of object-oriented programming takes 
us to a new conceptual design level in programming : it adds another level of 
improvement in the appearance of the written programming code. However the 
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languages themselves do not enforce readable presentation and good programming 
style; they merely enable it. Taking advantage of the facilities for programming at 
a higher level, closer to natural language or mathematics, is achieved only through 
education and good training of the next generation of programmers. Some of what 
may be achieved in ultra-high level language programming is illustrated by an 
object-oriented graphics programming platform called CGE. This is basically a li
brary that is to be linked into a user's application program at compilation time. But 
it contains declarations of object classes, methods and data that save the geometer 
from having to get involved in knowing the usual lower level details of program
ming. Additionally, coordinate values do not have to be entered by the programmer, 
and the positions, shapes and sizes of the geometric objects can be automatically 
selected by the platform (or else by the user with a pointing device). Euclidean 
geometry is coordinate-free and so is the CGE platform. CGE also incorporates con
straint resolution by the Democracy Algorithm presented in [Rankin, 1991]. This 
means that the geometer is free to modify the graphics subject to the constraints 
that he has set up for it. 

The Democracy Algorithm is an iterative process of information sharing amongst 
a society of intelligent agents (objects). The resulting resolution of the constraint 
equations generally cannot be precisely predicted, and the process shares many of 
the features of emergent phenomena [Huberman, 1991]. For the present applica
tion, the issue of obtaining a required position, orientation, or configuration of a 
constrained system is not important and so emergent phenomena aspects are not of 
concern here. In this paper the Democracy Algorithm, as given in [Rankin, 1991], 
is modified to work with a global list of key construction points. In this form, the 
agents no longer exchange their own data with each other, but with a universally 
accessible repository of data. This approach suits our problem and it means that 
the user must create all the construction points in advance and then use them for 
placing graphics elements (GEs). 

The CGE library consists of object class definitions for the usual entities referred 
to in Euclidean geometry of straight line segments, circles, arcs of circles, squares, 
rectangles, ellipses and arcs of ellipses. It provides the methods for initializing, 
changing, displaying and erasing objects of each of these classes. Additionally there 
is a number of other utility functions provided that are not provided as object 
methods. For example, the procedure roughly_equal(P,Q) returns true iftwo points 
P and Q are visually coincident in the graphics output and false otherwise. The 
distance(P,Q) function returns the metric distance between the points P and Q and 
the angle(P,Q,R) function returns the radian angle subtended at point Q by the 
line segments QP and QR sweeping anticlockwise from QP to QR. A facility for 
dynamically displaying numeric values derived from a flexible construction is also 
provided in the new class type called observable. On initialization, objects of the 
class observable automatically select and lay exclusive rights to a section of the 
screen for display purposes. An object of this class continually displays its value in 
its own screen display area. Assigning a new value to such an object will cause the 
displayed value to be updated. 
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2 Geometrical Theorems as Constraint Systems 

The theorems in traditional Euclidean plane geometry (see e.g. [Euclid, 1956], 
[Siddons and Snell, 1946]) apply to an indefinitely large set of cases. Each case 
where a theorem applies can also be displayed visually on a graphics screen in 
an obvious way. But more than one configuration of the graphics represents the 
same application case of the theorem since the theorems apply no matter what 
the position and orientation of the graphics image representing them is. But ad
ditionally, variation in the individual configurations of components in the image, 
such as points, line segments, arcs and circles may also be application cases of the 
theorem. Therefore, in displaying a geometrical theorem on a graphics screen, we 
wish to allow the viewer to be able to change the configurations of the components 
of the image, or the configuration of the whole image subject to the restrictions 
under which the theorem applies. As the viewer makes changes, he must receive 
visual feedback that indicates clearly to him that the theorem continues to hold 
true. This feedback may often be in the form of a numerical display of the values 
of one or more expressions involving angle or distance measurements on the case 
being displayed. This means that the graphics platform supporting the needs of 
geometers should be a constraint system [Rankin, 1991] [LeIer, 1988] whereby ge
ometrical elements can be constrained in ways naturally occurring in Euclidean 
geometry, and interactively displayed, as well as providing the interactive display 
of numerical quantities derived from the particular geometry. 

The phraseology used in Euclidean geometry is still too high a level for direct im
plementation in software and we need to design a lower level language capable 
of expressing the same ideas. For example, all key defining points [Rankin, 1991], 
[Rankin and Burns, 1990] implicit in a theorem must be explicitly declared as is 
usual in current day programming languages. CGE provides a point class for this. 
Every point that the geometer will need in his constructions should then be declared 
at the start as an object of this class. The application code will also need to initialize 
each of these objects by a call to the class constructor method. This method requires 
no other parameter than the string name identifYing the point concerned. As well 
as creating an object of the point class, the constructor method initializes its coor
dinate values by intelligent autoselection, and then displays the point as a labelled 
marker. (The visible graphics label is the string name given to the point in the 
constructor method parameter. The marker size, colour and style are set the same 
for all points.) The current implementation of intelligent autoselection is as follows. 
Random values for the x and y coordinates are first generated within the predefined 
acceptable screen ranges. All points that have been constructed are placed into a 
linked list structure by CGE. The tentative coordinates for a new point are tested 
against the coordinates of all points defined earlier which are in the linked list. If 
the new coordinates are within epsilon of the coordinates of any point in the linked 
list, then new random coordinates are generated and tested again and so forth. 
Once acceptable coordinates have been created the point is stored in the linked list 
and displayed. The non-visual coincidence of key points in a construction is a uni
versal constraint that must be satisfied by all geometric constructions even under 
interactive modifications. From the linked list of key points, graphics entities are 
placed and displayed by selecting sets of key points as finite defining point sets as 
described in [Rankin, 1991]. 
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As a simple example consider the first theorem from [Siddons and Snell, 1946]. If 
a straight line stands on another straight line, the sum of the two angles so formed 
is equal to two right angles. 

To put this theorem into explicit form we would say the following: Create two 
distinct points called P and Q. Construct the line segment PQ. Create a new distinct 
point called R on the line segment PQ. Construct a fourth distinct point S. Compute 
the angles angle(S,R,P) and angle(S,R,Q) and display their sum. The displayed sum 
should remain constant (equal to p) no matter where the points P, Q, R and S are 
moved to subject to the constraints that they are all distinct and that R lies on PQ. 
To express this in a language based on object-oriented programming, the geometer 
must enter the following: 

var 
P,Q,R,S,T : point_class; 
Ll : line_segment_class; 
sum : observable; 
finished : boolean; 

begin 
begin_CGE; 
P.construct('P'); Q.construct('Q'); 
R.construct('R'); S.construct('S'); 
Ll.construct(P,Q); 
Ll.nearest~oint(R,T); R.assign(T); 
sum.construct('angle SRP plus angle SRQ = '); 

sum.assign(angle(S,R,P) + angle(S,R,Q)); 
finished := FALSE; 
move_a-point; if coincidence then restore-points; 
while not finished do begin 

resolve_constraints; 
if coincidence then restore-points; 
sum.assign(angle(P,R,S) + angle(S,R,Q)); 
move_a-point; 

end; 
end_CGE; 

end. 

In this constraint system, the user can move any of the four points P, Q, R or S on 
the screen. If P is moved then the line segment PQ also moves and this leads to a 
new position for the point R which causes the line segment RS to move. However, 
there is no movement induced in the point S. The wayan induced movement is 
computed for point R is to cause R to jump from its old position to the nearest point 
on the line segment PQ. (Other applications of the nearest point method have been 
described in [Rankin and Burns, 1990].) If this change in R results' in a visual non
coincidence violation then the displacement of point P is rejected and the original 
point position ofP is retained. Interactively selecting point Q and moving it results 
in similar constraint resolution as for the displacement of P. If the user displaces 
the point R, then the line segment PQ remains fixed and the point R jumps to the 
nearest point on the line segment PQ to the displaced position of R. Again if this 
position is too close to P or Q then the displacement is rejected and R is restored 
to its original position. Even if a movement in R is induced, the other points, P, Q 
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and S do not move. Finally, if the user moves point S there is no effect on any of the 
other points, P, Q or R. If visual non-coincidence is violated by the displacement, 
then the displacement is rejected and S remains in its original position. Otherwise, 
S takes on the new position that the user sets and consequently the line segment 
RS will move. 

As a second example, consider theorem 6 from [Siddons and Snell, 1946] which is 
dealt with in a similar way: The sum of the angles of a triangle is equal to two right 
angles. 

To put this theorem into explicit form we would say the following. Create three 
distinct points called P, Q, and R. Compute the angles angle(Q,P,R), angle(R,Q,P) 
and angle(P,R,Q) and their sum and display the sum. Also display the edges PQ, QR 
and RP. Allow the user to move any of the points P, Q or R about and he will see that 
the sum always equals 2*p. To express this in a language based on object-oriented 
programming, the geometer must enter the following: 

var 
P,Q,R : point_class; 
Ll,L2,L3 : line_segment_class; 
al,a2,a3,sum : observable; 
finished : boolean; 

begin 
begin_CGE; 
P.construct{'P'); Q.construct{'Q');R.construct{'R'); 
Ll.construct{P,Q); L2.construct{Q,R); L3.construct{R,P); 
al.create{angle{Q,P,R)); 
a2.create{angle{R,Q,P)); 
a3.create{angle{P,R,Q)) ; 
sum.create{al.value + a2.value + a3.value); 
finished := FALSE; 
move_a-point; if coincidence then restore-points; 
while not finished do begin 

resolve_constraints; 
if coincidence then restore-points; 
al.assign{angle{Q,P,R)); 
a2.assign{angle{R,Q,P)); 
a3.assign{angle{P,R,Q)); 
sum.assign{al.value + a2.value + a3.value); 

Ll.show{WHITE); L2.show{WHITE); L3.show{WHITE); 
move_a-point; 

end; 
end_CGE; 

end. 

In this constraint system, the user can move any of the three points P, Q, or R on the 
screen. The three points can be placed anywhere on the screen without constraint 
except for the universal visual non-coincidence constraint. The program shows the 
triangle, the triangle angles and their sum. 



www.manaraa.com

244 John R. Rankin 

More advanced theorems can better illustrate the implementation of dynamic con
straint systems. Consider for instance, the theorem: The perpendiculars of a trian
gle are concurrent. For this constraint system, three points P, Q and R are digitized 
(or else selected by the computer). Then the line segments Ll = PQ, L2 = QR and L3 
= RP are constructed. Next the perpendiculars are constructed: an infinite line I1 
passes through P and perpendicular to L2, an infinite line 12 passes through Q and 
perpendicular to L3, and an infinite line 13 passes through R and perpendicular 
to Ll. Then it will be seen that the point of intersection of I1 and 12 equals the 
point of intersection of 12 and 13. To allow the Democracy Algorithm to apply to 
this system we need to invent a new subclass called perpendicular. An object of this 
class is displayed as an infinite line and is initialized and assigned by three points 
say A, B and C. The infinite line then is that which passes through point A and is 
perpendicular to the line segment BC. (Infinite lines rather than rays or finite line 
segments were implemented as they are often necessary to reach the intersection 
point.) In an interesting variation of this theorem, perpendicular.init(A,B,C) was 
replaced with line_segment.init(A,D) where D is the nearest point to A on the line 
segment BC. The result was that the theorem continues to hold true but now the 
intersection point is always inside the triangle. 

As an example of a theorem involving circular arcs: The angle of a circle segment is a 
constant. To construct this constraint system, select a point C, and two other points 
A and B. Construct a circle using points C and A : the circle is defined as having 
centre C and radius distance(C,A). Also construct an arc (a circle segment) with this 
centre C and the same radius. The arc starts from point A and turns anticlockwise 
to terminate on the infinite line through CB. Now select a fourth point P. From P 
compute the nearest point Q to it that is on the circle. Construct and display the line 
segments AQ and BQ. Take the angle angle(B,Q,A) as an observable. Allowing only 
the point P to be moved it will be seen that the angle displayed remains constant. 
If the other points A, B or C are moved then the angle value changes to a new 
value, but moving P (and hence Q) does not alter the new angle value displayed. 
This theorem only requires the class of circles to be provided in CGE. It uses the 
nearest point method which, as pointed out in [Rankin and Burns, 1990], is a very 
useful and even necessary method for all geometrical element classes of CGE. 

3 Geometrical Object Hierarchy 

There is a tendency to confuse subcases with the OOPs concept of subclasses. For 
example, fixed length line segments are a special case of line segments. If the 
geometric parameters of a line segment are xl, yl, r and theta, (where (xl, yl) are 
the coordinates ofthe first end-point, r is the length of the line segment and theta 
is its radian angle relative to the x-axis) then the geometric parameters of a fixed 
length line segment could be taken as xl, yl and theta as the length r cannot be 
varied from the value it was initialized to (by the init method). So fixed length line 
segments are a subcase (the case when r is held fixed) ofline segments. However 
when we make OOPs classes out of these, the class of line segments is properly a 
subclass of the class offixed length line segments. This is because in OOP, subclasses 
have all the features or parameters of the superclass plus some new ones. Similarly, 
circles, with parameters xc, yc and r, are subcases of circular arcs, with parameters 
xc, yc, r, thetal, and theta2 (the case when the end angle equals the start angle), 
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but the class of circular arcs is a subclass of the class of circles and so on with the 
many other instances of subcases that occur in geometrical constraint problems. 
Note that subcases of geometrical objects have fewer parameters than the more 
general case because the latter has had some restrictions placed on its parameters 
to define the subcase. In contrast, with the OOPs subclass concept, subclasses have 
all the inherited parameters of the parent plus some additional parameters. That 
is, geometric subcases actually correspond to OOP superclasses and vice versa. A 
problem with this for geometric applications is that, as we develop software or 
extend existing libraries (extensibility of compiled code being an important feature 
ofOOP) we usually think of new classes to add that are subcases of existing ones for 
example the various strains of constrained line segment (fixed length, fixed angle, 
fixed length and angle). So in incremental development we wish to add on new 
subcases, but OOP makes it very convenient to be adding on new subclasses, not 
subcases. 

However, it is possible to write the OOP code with the class of fixed length line 
segments as a subclass of the class of unrestrained line segments. For example 
we could set up the class of line segments with the parameters xl, y1, x2, y2 
(the end- point coordinates). Now we make a subclass of this with the additional 
parameter r for the length ofthe line segment. When an object of this class of fixed 
length line segments is initialized, r has its value set. Any assignment to objects 
of class fixed length line segment must not use the inherited assign method of the 
superclass of line segments because this assign method allows the length of the 
line segment to change. Therefore the subclass of fixed length line segments has to 
implement a new assign method to override the inherited one. In fact, only the init, 
digitize and assign methods need to be rewritten for the subclass offixed length line 
segments. Other methods like midpoint, move (which digitizes the new end-points 
and then invokes the assign method), enquire, nearest-point, show and hide can be 
directly inherited with no overriding methods. If we followed the normal intention 
of subclasses in OOP programming and made the class ofline segments a subclass 
ofthe class of fixed length line segments then we could inherit all methods from the 
class of fixed length line segments except that we must override the digitize and 
assign methods. The important advantage of using inheritance in programming is 
that objects can be created incrementally with little additional programming effort 
for each added subclass, and this example, while going contrary to the usual OOP 
notion of what is a subclass and what is a superclass, shows that the advantages 
of inheritance programming are nevertheless applicable. The difference between 
programming subcases as subclasses rather than superclasses in this example 
was only the requirement that the init method must also be reimplemented (plus 
having to put up with having additional superfluous inherited parameters in the 
data structure area). 

4 Improved Iterative Constraint Resolution 

The Democracy Algorithm [Rankin, 1991] has been used for dynamically building 
and testing many different graphical constraint systems. All constraint systems in 
this context are created by selecting independent autonomous objects and linking 
them via message passing pathways according to the desired global design of the 
constraint system. All components of a constraint system are graphics elements 
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(GEs) which are OOPs objects defined by finite defining point sets (FDPSs) as in 
[Rankin, 1991]. Only point sets are transferred between the objects. Each object 
stores the input point FDPS values, then uses and modifies them to determine 
its own configuration according to its own inbuilt constraints, and then stores 
internally the modified FDPS values for other objects to receive if needed. For 
the Democracy algorithm, all GEs in the constraint system are maintained in a 
linked list in chronological order of creation and the pathways of point transfers 
are added to this as an extra data structure of pointers. The algorithm applies the 
current point positions to each GE in this list in tum receiving modifications ofthe 
point positions from each GE as it goes. The modifications to the input points are 
induced by the internal constraint equations encoded in each constrained GE class 
as described in [Rankin, 1991]. When there are no further changes in the input and 
output FDPS point set coordinates (to epsilon accuracy) for all GEs involved in the 
constraint system, then the iterations terminate with the new resolved solution to 
the constraints. It was noted that the stopping criterion of visual epsilon accuracy 
gave us very quick constraint resolution and usually in less than 10 iterations. It 
was also observed that this geometric constraint resolution technique applies to 
a wide variety of geometric constraint types [Rankin, 1991], and can be arranged 
into a hierarchy. By regarding a constraint system together with its Democracy 
Algorithm as a new constraint object that can be combined with other constraint 
system objects, a higher level of interacting objects arises and, in this higher level 
another Democracy Algorithm must operate to maintain the constraints set at this 
level. The constraints placed on a constraint system from its schematic diagram 
become the internal constraints for this constraint system regarded as a new object 
itself These constraint system objects can be saved to disk as persistent objects, 
and reloaded whenever needed again in the future when they could be manipulated 
further, and combined together into new hyper-constraint systems. It remains to 
be seen what scope this approach will give to the study of constraint systems. 

The design of the constraint system is coded in the GE list that is given to the 
Democracy Algorithm. This design is encoded as a large structure of additional 
pointers attached to the GE list as described in [Rankin, 1991]. In that reference, 
it was shown to be helpful to create the design from electronics-like schematic 
diagrams. The diagrams showed which points are joined (in common) amongst 
the GEs. They also indicated the flow of dependencies for point values between 
the GEs. It was noted in that paper that whilst for many constraint systems one
way dependencies were sufficient to computationally maintain the integrity (the 
valid appearance) of the constraint system, two-way dependencies ensured the 
maintenance of integrity in every case considered. However, this result only applies 
to pairwise joins. If, for example, three fixed-length line segments, Ll, L2 and L3 
are constrained to join at a particular choice of their end-points, say L1.Pl, L2.Pl 
and L3.Pl then the structure of pointers needed to be changed. One approach 
considered was to make a ring where the L1.Pl input is derived from the L3.Pl 
output value, the L2.Pl input is derived from the L1.Pl output value and the L3.Pl 
input is derived from the L2.Pl output. This is symbolized by: 

Ll. PI <-- L3. PI; 
L2.PI <-- Ll.PI; 
L3.PI <-- L2.PI; 
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While this does generalize the two-way dependency of pair joins, tests have shown 
that again this does not maintain the integrity of the constraint system. However, 
by making a double-linked ring of pointers between all GEs involved at a multiple 
join, it has been found that the integrity ofthe constraint system does not become 
corrupted: 

Ll.Pl <-- L3.Pl; L2.Pl <-- Ll.Pl; L3.Pl <-- L2.Pl; 
L3.Pl <-- Ll.Pl; L2.Pl <-- L3.Pl; Ll.Pl <-- L2.Pl; 

The extra code needed for this surprisingly reduced the execution time because 
convergence was more rapid. 

In the Democracy Algorithm as described, points are not objects but the defining pa
rameters of graphics objects, and graphics objects interact only with other graphics 
objects - all point data knowledge is kept locally in the graphics objects concerned. 
In the construction of the platform for Euclidean geometry it was decided to make 
all the key points of a construction global. In this approach, the user must create 
the key points of the geometric construction first and then select from them to place 
GEs. The Democracy Algorithm again goes through each GE in the GE list in turn, 
but each GE must now get its input points from the global list of key points of the 
construction. The algorithm updates the points it uses from this global list with 
the modified FDPS values that each GE produces. One can compare these two ap
proaches in the familiar triangle example. In the first approach, the line segments 
L1, L2 and L3 have the double linked constraints: 

Ll.Pl <-- L3.P2; L2.Pl <-- Ll.P2; L3.Pl <-- L2.P2; 
L3.P2 <-- Ll.Pl; L2.P2 <-- L3.Pl; Ll.P2 <-- L2.Pl; 

(although the second links given in the second line are not really necessary in 
this case to preserve the integrity of the triangle [Rankin, 1991]). In the second 
approach, the constraints are expressed as: 

Ll.Pl <-- p. , Ll. P2 <-- Q; 
L2.Pl <-- Q; L2. P2 <-- R; 
L3.Pl <-- R' , L3. P2 <-- P; 

where P, Q and R are the global points. In the OOPs code the Democracy Algorithm 
for these reduces to: 

repeat 
L3.enquire(E,F); Ll.enquire(A,B); Ll.assign(F,B); 
Ll.enquire(A,B); L2.enquire(C,D); L2.assign(B,D); 
L2.enqulre(C,D); L3.enquire(E,F); L3.assign(D,F); 

until no further changes in Ll, L2 and L3; 

{where A, B, C, D, E and F are purely local point variables} for the first approach, 
and for the second approach: 
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repeat 
Ll.assign(P,Q); Ll.enquire(P,Q); 
L2.assign(Q,R); L2.enquire(Q,R); 
L3.assign(R,P); L3.enquire(R,P); 

until no further visible changes in P, Q and R; 

The first algorithm can be transformed to close similarity with the second through 
the identification of the local point variables F, B and D as the globals P, Q and R 
respectively. Then it can be seen that the first approach does effectively the same 
iteration steps as the second approach but lags a step in its updates on the first 
line segment parameter. The second approach always uses the latest values of the 
FDPS input points. However, tests show that the two approaches give about the 
same performance in the approach to convergence with the second approach being 
slightly faster on average. Of course there are major differences in the approachs 
with regard to the construction and manipulation of constraint systems. In the first 
approach the construction algorithm is: 

repeat 
select a constrained GE type from the menu 
& then digitize its FDPS 
OR 
select join points from the menu, 
& then select a first GE on the screen and 

then a key point on it, 
& then select second GE on the screen and key point on it 
OR select displayed key point and move it to new position 

until finished 

In the second approach, the construction and manipulation algorithm is: 

repeat 
create a key point 
OR select a constrained GE type from the menu 
& then select from the displayed key points for its FDPS 
OR select a displayed key point and move it 

until finished. 

The second approach has been adopted in this platform since an emphasis on 
key points is typical of problems in Euclidean geometry. It has also simplified the 
required data structuring for maintaining the design of a constraint system. A set 
of pointers in a double ring is not required to maintain the integrity of multiple 
joins in this approach. 

5 Conclusion 

The CGE library is an object-oriented graphics platform suitable for building ap
plication programs for geometers. The platform automatically builds constrained 
systems and incorporates a constraint resolver. This is a particularly useful tool for 
educationists who need to illustrate geometrical theorems in training students. The 
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constraint resolver has the main features of the original Democracy Algorithm pre
viously published. However, it is improved in a way that allows for multiple joins. 
Experimentation has shown that a singly-linked ring of merged end points is not 
sufficient to maintain the integrity of a multiple join but that a doubly-linked ring 
is sufficient in all known cases. However, in this application, a global list of OOPs 
point objects allows multiple joins without the need for ring structures. Also for 
this problem of providing a graphics platform for Euclidean geometry the universal 
constraint of non-visual coincidence amongst the key points of the construction has 
to be maintained. This is solved by rejecting interactive inputs that immediately 
give a violation of the constraint or yield a violation after the Democracy Algorithm 
has finished. When a modification is rejected the program sounds a warning and 
restores the previous configuration of key points. 
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The Application Exposure: Bridging the 

User Interface and the Application 

Tom Z.-Y. Zhou and William J. Kubitz 

In a previous paper we described a new user interface model. This paper discusses further a 
crucial part of the model called the application exposure. Assuming that the application side is 
built in an object-oriented way, the application exposure allows application objects to be defined 
much more independently of the user interface support system than has been possible using 
traditional subclassing approaches, yet provides sufficient application information to the user 
interface side to support direct manipulation operations on application objects. 

1 Introduction 

Reusability is a crucial issue for object-oriented user interface (UI) support systems. 
''White-box" reuse [Johnson and Foote, 1988], or class reuse, of an object system 
(often known as a framework) is through subclassing of the existing class hierar
chies. In contrast, ''black-box'' reuse, or component reuse, allows the programmer to 
choose components from a class library, customize them with parameters, and as
semble them into a functional module. In general, component reuse is much easier 
than class reuse. In our view, a UI support system should be primarily component
reusable, relying on class reuse only when the system must be extended. 

We feel that many existing systems [Krasner and Pope, 1988, Sibert et al., 1986, 
Barth, 1986, Vlissides and Linton, 1989, Myers et al., 1990] do not put enough em
phasis on component reuse. Although there are good examples of component reuse 
in these systems, such as the "pluggable views" in Smalltalk and the "Interactors" 
in Garnet [Myers et al., 1990], as a rule new applications are almost always built 
by subclassing the existing class hierarchies. That is, the framework provides a 
collection of "generic" objects that possess interactivity, while an application sub
classes these objects to add application specifics. As such, reusing these frameworks 
is often not as easy as one would wish. 

Another problem with the subclassing approach is that many applications, espe
cially 3D ones, are quite complex and have many application-specific considerations 
as to how their objects should be represented. In solid modeling applications (see 
[MantyHi, 1988]), for example, many different variations of a so-called "winged-
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edge" data structure may be used for the same kind of boundary representation (or 
BR) object to suit different sets of application algorithms. Forcing the application 
objects to follow a certain format imposed by a framework can be too restrictive. 

Our goal is to build a more component-reusable DI framework to support 3D ap
plications. Since subclassing inherently constitutes a tight coupling between the 
DI support system and the application, we decided that our system must allow the 
application to be built as a separate class tree. In so doing, we required a mech
anism with which to couple the application to the DI functionality "horizontally". 
This coupling must be adequate for purposes of user interaction, yet loose enough 
that it does not impose restrictions on the way the application is built and does not 
require the application programmer to learn low level details of the support system 
in order to implement this linkage. We formulated a layered model of the user in
terface [Zhou and Kubitz, 1992] in which the application exposure (AE) layer was 
exactly designed to achieve this coupling. Our conviction is that an object-oriented 
approach offers new ground on which we can avoid traditional problems, such as in
adequate semantic feedback, that have hindered horizontal coupling in traditional 
systems [Pfaff, 1985]. With object-orientation, each application object constitutes a 
localized context making it much easier for the DI to acquire application semantics 
from the individual objects involved in the interaction. 

-The AE layer is divided into two portions: one that exposes application operations 
and one that exposes application representations. Application representations may 
take many forms but are specified completely by the (real or contrived) geometric 
(or structural) description and material properties of the application objects. The 
real issue is, then, how to expose the application object properties necessary for 
producing a suitable representation along with the operations on the object that 
are relevant to the current needs of the user. These operations may be local to the 
user interface or may be application operations which must be presented to the 
user through the user interface. 

2 Exposing Application Representations 

The exposure of representations applies not only to application objects having in
trinsic geometric properties, but to all application objects having any form of visu
alization. That is, it applies generally to all objects having a visual representation 
of any kind. 3D solid models, spatial grids, particle systems, surfaces, and curves, 
for example, are all ways of defining geometric representational properties. In each 
of their defining classes, the application programmer must add an exposure method 
which is able to traverse any instances of the class and express their geometric 
representations in a format imposed by the Dr. In other words, the method will 
generate objects in a standard format containing the application data, and return 
them to the Dr. In a similar way, the material properties of the object must be 
made available to the user interface in order to properly represent surface prop
erties. In this way, the user interface can manage the graphical representation 
of the application object that is presented to the user. This graphical representa
tion may in fact be specified by the application and it can be generated for the 
user interface in the same manner as it would be by the application itself, that is, 
by using a modern graphical modeling support system such as Egbert's GRAMS 
[Egbert and Kubitz, 1992], suitably augmented. 
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2.1 Graphic Objects 

Interface Graphic Objects [IGOs] are of two kinds, those whose defining properties 
(geometry and material) originate in the application and are "passed through" the 
user interface so that the UI has control of the representation presented to the 
user (which can be chosen by the application or the UI, as needed) and those 
UI "assistance objects" whose defining properties and representations are both 
entirely determined by the UI itself Passing application object definitions through 
the UI prior to chosing the representation (unless dictated by the application) has 
the advantage that the UI may choose a representation best suited to a given 
operation, which may not have originated with the application, but rather with the 
user interface. Thus, as the context switches between the UI and the application, 
the representation may be changed to the one best suited to the task at hand. 
This is also extremely useful when the UI is serving as the common interface to 
multiple applications used to operate on the same underlying application data. This 
scheme is possible because of the decoupling of the application modeling from the 
graphics modeling, and because the application and the user interface share the 
same geometric and material specification scheme and the same graphics modeling 
system. 

The standard format is defined by a graphics class hierarchy, such as that provided 
by GRAMS, depicted in Figure 1. Objects defined in this hierarchy are simply 
graphic representational objects provided by a large graphics modeling library. As 
stated above, while all the representations come from the same modeling hierarchy 
the defining information comes from the application or the user interface. The user 
interface manages the screen presentation in both cases. In this case ofthe UI itself, 
this includes assistance objects used to help the user perform certain alignments 
and those used to provide visual representations for both mediators and activators 
[Zhou and Kubitz, 1992]. Thus, the term IGO is used to mean a graphics object 
managed by the user interface. 

Objects in this class tree are not orthogonal. In general, objects defined in the 
Prirni t i veGO subtree can be used to adequately convey geometric descriptions for 
all covered applications, assuming that those applications do not use higher order 
geometric constructs than quadrics. But since applications often work at more ele
vated structural levels, more complex GO classes are added to simulate the common 
geometric object structures that are well-established among applications. Thus, the 
class BRLikeGO defines GOs that best represent a specific kind of application object, 
namely solid models defined by their boundaries. The objects defined by uni f orrnGO 
are convenient for shadowing application objects with uniform finer details, such 
as particle systems and spatial grids. The class CornpositeGO is for representing 
application objects composed of other application objects. In particular, CSGLikeGO 
is for shadowing solid objects built with so-called normalized boole~ operators 
+*, -*, and n*, while AggregateGO is suitable for compositions of heterogeneous 
objects. 

Providing these higher-level GOs in addition to the primitive GOs substantially 
narrows the possible structure and semantic gaps between application objects and 
the objects created to represent them in the UI, making the task of exposing ap
plication representations easier and more efficient. From the standpoint of the UI, 
these higher-level objects are also more convenient to manipulate. 
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IGOs are the graphical representations of application objects (or UI objects) whose 
definitions have been exposed to the UI by the application. Once chosen, the rep
resentations are managed exclusively by the UI even though operations on the 
underlying application objects may cause the representation to change form (but 
not the chosen visualization type). This situation prescribes the following properties 
forIGOs. 

• IGOs only need to reflect the properties of application objects that are user 
interaction-relevant (to the current user interface and/or the application con
text). 

In 3D applications such as solid modeling, such properties include primarily the 
geometric representations of application objects. The UI needs this information to 
produce appropriate visual representations (visualizations) of the application ob
jects, to handle high level processing of hit-detections, to compute possible on-screen 
constraint conditions, etc. Properties of application objects that are not relevant to 
the context of the current operations need not be accurately depicted by the IGOs. 
In fact, one of the most important features of an IGO is to clearly and accurately 
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depict, even emphasize, the properties of the underlying application object that are 
relevant to the current context. 

The class BRLikeGO is a good example. The boundary representation in solid mod
eling defines solid models in terms of their boundaries. Typically, a BR contains not 
only the geometric description of the boundary elements but also the topology of 
them, expressed in an elaborated form known as "winged-edge" data structure. For 
solid modeling applications, this topological information is very important because 
it allows algorithms that modify solid models via Eular operations, as well as those 
that evaluate solid models, to work efficiently, or to work at all. However, the UI 
does not itself perform similar operations on the IGO visualizations of such BR ob
jects, even though the visualizations presented on the screen may be used to allow 
the underlying applications to do so. Therefore, there is no need to include the full 
topology in the definition used to produce the visualization of the class BRLikeGO. 
The proper visualization form for an application object is dependent on the use. 
Systems like GRAMS offer a number of different visualizations to the application. 
In addition, as mentioned, the UI can intervene in the choice of the visualization 
used. When an operation is invoked through the user interface that modifies the 
underlying application data (as many application operations would), then clearly 
the defining information of the representation is changed. This mayor may not 
cause the visualization to change, depending on whether or not the defining data 
from the application object used by the visualization is affected by the changes. 
In most cases, of course, the application would choose to use a visualization that 
does show the changes as that is the essence of interactive systems. In spite of 
this, there might be uses where a simplified visualization (which is apt to be less 
computationally demanding) is used to invoke an operation and then the visualiza
tion is switched to a more sophisticated one (which is likely more computationally 
demanding) to view the result ofthe operation. 

Thus, IGOs may not always need to depict application objects at a high level of 
accuracy on a continuous basis. Typically, a solid modeling application manipulates 
BR models by applying so-called "local modifications" to them, such as rounding 
("blending") a sharp edge, lifting an interior point of a face, or even splitting a 
model into parts. These operations cause faces, vertices, and edges to be added to 
or removed from a solid model, or may even, as in the case of splitting, create new 
BR models. Obviously, the application must handle all these situations. The BR 
objects in the application must be able to update themselves when undergoing such 
operations. However, in many cases there is no need for the UI to continuously follow 
suit by displaying the detailed visualization of these BR objects. This would be true, 
for example, if the only purpose of the UI representation was to help in identifying 
the lifting point on a face or placing a cutting plane for splitting a face. In this 
case, a simplified representation would be sufficient until after the operations had 
been performed by the application, after which the application representation for 
the updated BR objects would need to be redrawn (probably using a higher quality 
representation) so that the user could see the precise results. In other words, IGOs 
need not continuously update themselves during all operations since it may be 
sufficient for them to be updated at the completion of an operation. This will save 
substantial computation time. 

By ignoring the application specifics that are irrelevant to the UI (though perhaps 
important to the application), IGOs can be more general, and in many cases simpler, 
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than the application objects they represent. It is not unusual for a single GO class 
to be used to represent several different types of application objects . 

• IGO operations (as opposed to application operations) are used exclusively by 
the DI and can be hidden from the application. 

All IGOs must accommodate general DI operations. First of all, as representations 
of application objects they must be able to display and highlight themselves to 
supply visualizations of application objects like any graphic objects. They must 
also support hit detection (with the support of the graphics system) so as to let the 
user select screen image objects and thus DI and application objects. Finally they 
must accommodate dragging (translation), rotation, and scaling operations, like all 
graphic objects, so as to allow dynamic visual feedback when the visualized objects 
are so operated upon at any level (user, DI system, application, etc.) The methods 
defined on the abstract top class of the GO hierarchy in Figure 1 represent the 
operations that all GOs support. 

Since composite GOs reflect a kind of object that is hierarchically constructed, they 
must provide ways for reaching lower-level objects. Thus, the method components 
is defined on the abstract class CompositeGO. This method is invoked by the DI 
when making context shifts [Zhou and Kubitz, 1992]. 

Many application objects contain finer detail that do not qualify as sub-objects. For 
example, vertices, edges, and faces in a BR object, or meshes in a grid object, do not 
contribute to the BR object or the grid object in the same way sub-objects do to their 
composite. In general, applications do not define objects at a level lower than the 
smallest semantically useful one, although the raw data at the lowest level must 
be accessible via a method that understands the data structure. Thus, there is no 
need for hit detection below the object level if an application is properly designed. 
Methods must exist in the DI to support subpart selection [Zhou and Kubitz, 1992] 
from the application data base (assumed to be object-oriented), but this does not 
necessarily imply selection through object hit detection by the user. 

The DI always has access to the geometric and material information of application 
objects and thus has the information needed to handle DI constraint conditions 
between representations. This information is available through the application ex
posure for the particular application or DI object. The methods geornDesc, defined 
for all primitive GOs, and center and mainAxis, defined for all complex GOs, 
provide this information. 

Since the above GO operations concern the DI and/or the graphics support sys
tem, they can be hidden from the application side, thereby greatly simplifying the 
application programmer's view of the user interface . 

• GOs exhibit different views to the DI and to the application. 

The user interface shares the GO view held by the graphics modeling system rather 
than the high level, AGO view of the application. This facilitates many of the low
level (and graphics) operations that must be performed by the DI but are unknown 
to the application. For DI support, just as for generic graphics support, the GO 
class tree follows a strict type hierarchy. This provides the benefit of polymorphism 
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in the manipulation of IGOs by the Ur. On the other hand, operations are not the 
only determining factor for the organization of this class hierarchy. For example, 
the classes Planar and Quadric share the same abstract super class and the same 
set of operations, but they represent different geometric objects. The fact that both 
of these IGOs can be operated upon in exactly the same way by the UI is largely 
irrelevant to the application. More important is the fact that a quadric surface 
must be represented with a quadric IGO, not a planar IGO. Thus, in the eyes ofthe 
application programmer, the IGO tree is only a class library in which each class 
defines a type of object of a certain geometric nature and provides one or more 
constructor(s) that can be called upon to create instances of that class. 

2.3 Multiple Representations for GOs 

In a modern graphics modeling system such as GRAMS, multiple visualizations 
(different graphics representations) of a given defining object are possible. Thus, 
multiple visualizations of IGOs are possible. The visualizations adopted for IGOs 
may affect the efficiency of commonly used IGO operations, such as rendering 
(including viewing transformations), hit detection, and geometry conversion. Often 
a single visualization will not be adequate for supporting all UI operations on a 
given object. For example, the geometry of a sphere might be normally stored as the 
coordinates of its center and the radius. This form might be quite convenient for hit 
detection, but be less useful for explicit geometric and perspective transformations 
or scanline and wireframe algorithms, which are likely to be used by the IGO 
methods to produce different visualizations. Other examples are the form in which 
the geometry of planes and eSG objects are stored. Fortunately, a system like 
GRAMS provides automatic conversion of high level graphic objects to lower level 
primitives, thus removing this burden from the user interface. 

Thus, the application programmer is not burdened with converting application ob
ject definitions into forms ideal for IGOs. It would be a violation ofthe encapsulation 
offered by the graphics support system to do so because it amounts to opening the 
internal details of GOs to the application side. The application is allowed to use 
the most appropriate AGO as its representation unless the UI overides this choice 
because ofthe specific needs ofthe user interface itself. The user interface can cache 
the result of an internal geometry conversion performed by the graphics support 
system if the UI requires access to the converted form of the data, or as a means of 
increasing the efficiency and/or improving system response time. 

Caching IGO Geometry, Transformation Matrix, and Material Property 

An IGO cache is provided for each IGO for storing the final form of the geometry as 
derived by the graphics support system the entity's original mathematical descrip
tion supplied by the application. For example, it might store {center coordinates, 
radius} for a sphere or {vector, distance} for a plane. The geometry cache for an 
IGO is filled with either application supplied or computed data, depending on the 
needs of the chosen visualization. For example, if the application object is a plane, 
then the normal and the distance to origin are used to fill the IGO's cache directly. 
If, on the other hand, the object is a planar polygon then the values computed by the 
graphics support system are used to fill the cache. Similar considerations apply to 
storing the current transformation matrix and the final form of the material prop-
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erties for the IGO. The material properties may also have been derived from the 
original specification supplied by the application. Complex objects, such as BR-like 
and CSG-like GOs, use geometry caches to hold their centers and axes. Since these 
data are unlikely to be supplied directly by the application objects, but are also 
needed by the graphics system, they too can be obtained directly from it. The ge
ometry cache is used to answer geometry inquiries at the DI level and to eliminate 
the (usually) time consuming conversion process that takes place in the graphics 
system if only the high level geometric description is available. By supplying the 
geometric description required by the chosen visualization, the rendering speed is 
improved considerably and interactivity is enhanced. Hit detection is performed 
by the graphic system. The DI uses the result of the hit detection supplied by the 
graphics system. 

Efficiency of IGO Generation and Regeneration 

The creation of an IGO cache, as discussed above, is sometimes expensive since 
no conversion is involved and the specification from the application can be used 
directly. However, there is no way to know in advance what visualization may be 
chosen, so providing a cache for all possibly active IGOs is the only logical choice. 
In general, each time an application object is changed in such a way that the 
appearance of its current visualization changes, or a new visualization is chosen, 
the IGO representation changes and the IGO cache must be reloaded with the newly 
derived values. So a legitimate question is: To what extent will the visualization 
regeneration process impede the response time of the DI? The answer is very 
little. Dragging, rotation, and scaling, for example, are among the most demanding 
operations in terms of response time. But since the application object in these 
cases is only undergoing an affine transformation which does not really change the 
application object's representation, there is no need for regeneration at each step. 
Regeneration is necessary primarily when an existing object is modified, a new 
visualization is chosen, new application objects are introduced, or as the result of 
a splitting or combining operation. In these cases, fortunately, response time is not 
quite so critical since users are usually willing to tolerate a larger response time 
when an operation produces a result considered to be more significant by the user. 

2.4 IGO Visualization 

We now give a few examples of IGO visualization invocation, with the minimum 
use of pseudo C++ code. In the first example, the application objects are defined 
in a normal BR format. Suppose that the application accepts both planar and 
quadric surfaces for its solid models. Since the intersection of two quadric surfaces 
can be quite bizarre (think of the intersection of two cylinders), also assume that 
the application uses polylines to approximate such intersection curv'es. Thus a BR 
object may have quadric faces, but its edges are always polylines. 

Every application object in the BR format contains three lists that hold the geo
metric descriptions for the object's vertices, edges, and faces. The application object 
also contains a sophisticated piece of data representing the topology of its elements: 
the winged-edge structure. Fortunately, this structure can be ignored by the IGO 
visualization. 
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There is a BRLikeGO constructor that can use all three lists: 

BRLikeGO::BRLikeGO(Point* vertList, Line* edgeList, 
Surface* faceList); 

This constructor will generate a BR-like GO and return a pointer to it. Note that the 
three arguments are also pointers to GO types, namely Point, Line, and Surface. 
The exposure method defined on the application object will traverse its three lists 
and invoke constructors of the classes Point, Line, and Surface, respectively, to 
prepare the three arguments. Once this is done, it calls the BRLikeGO constructor 
to generate its shadow GO. 

Now suppose that the application objects are loosely defined BRs. Such an object 
contains a list of vertices and a list of faces, each face being a sequence of indices 
into the vertex list. There is a simpler BRLikeGO constructor designed for this case 
that takes only one argument: 

BRLikeGO::BRLikeGO(Planar* faceList); 

Planar is also a GO class. One of its constructors may take a plane description 
and another a planar polygon. In this case the latter constructor is obviously more 
convenient and will be used by the exposure method when it traverses the face list. 

As in the last example, consider the so-called "generalized primitives", such as a 
block given as a triplet {width, height, length}. If the programmer sees such a block 
as the intersection of six planar half-spaces, he may choose to visualize the object 
with a CSGLikeGO constructor, which takes a boolean operator (expressed as a text 
string) and a variable number ofGOs (in this case, six Planars) as the arguments. 
The Planar constructor that takes a plane description as the argument will now 
be used. The final call will look like this (constructors are called with "new"): 

new CSGLikeGO("Intersect", 
new Planar(l, 0, 0, 0), II normal, distance 
new Planar(-l, 0, 0, width), 
I I . .. 
) ; 

Depending on data available in the application, it is also entirely possible that the 
programmer will choose to shadow the object with a BRLikeGO constructor. 

3 Exposing Application Operations 

The exposure of application representations discussed so far is mainly used in 
direct manipulation operations. For both direct manipulation and the command 
mechanism [Zhou and Kubitz, 1992], application objects must also expose their op
erations. A classical example of this kind of exposure is the "pluggable views" of 
Smalltalk [Krasner and Pope, 1988]. The pluggability works as follows: if a model 
(an application object in Smalltalk terminology) decides that some of its methods 
should be invokable by the user, it can define a menu method which, when called, 
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will return an association list containing the user-invokable methods and the asso
ciated text strings that can be used to display these messages in a menu. The list 
must be in a standard format accepted by the system. A pluggable view is paired 
with a menu controller and can be "plugged" into any model with the standard menu 
message defined. When the user presses a mouse button at the view, the view will 
send the menu message to the model to get the list and pass it to the controller. 
The controller will then display a menu filled with the text strings and accept the 
user's choice. Finally the message associated with the item chosen by the user is 
sent to the model. This scheme can also be implemented with other object-oriented 
languages. 

3.1 Application Operations with Arguments 

The Smalltalk pluggability is very restrictive in that it only allows the user to in
voke application operations without arguments. As a generalization of this simple 
pluggability, the AE layer of our system must be able to expose application opera
tions that do take arguments. Now the situation is much more complicated. First of 
all, the number of arguments and the argument types, or collectively, the signature, 
for each exposed function must be conveyed to the UI. Without this information the 
UI will not be able to furnish the proper arguments to invoke the application oper
ation. Furthermore, since the functions defined on an application object probably 
have different signatures, using an association list to expose and invoke them is no 
longer a viable solution. But this second question is more implementation oriented 
and we shall focus on the first question in our discussion here. Again, brief pseudo 
C++ code will be used when necessary. 

Suppose the following functions are defined on an application object of class X and 
are intended to be callable by the user: 

class X { 
public: 

} ; 

void* funcl(int, String, Y*); 
void* func2(Z*, float); 
void* func3(Coord*); 
II . .. 

Also suppose that an exposure method exposeOps is defined on X. This function 
will supply the UI with each user-callable function's name and signature. Thus, for 
funcl, func2, and func3, exposeOps will return: 

"Function 1" , 3, nintll, "String" , IIY*II 

"Function 2 II I 2, IIZ* II I "float" 
"Function 3 II I 1, "Coord*" 

The issue here is: How would the UI interpret the information? There are actually 
three categories of arguments, each requiring a different treatment. 

One category includes types provided by the implementation language understood 
by both sides. In the case of C++, these are int, float, char*, etc. The only trick 
here is that, if the application has renamed a type, say char*, as String, it must 
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expose the original type name instead of the "proprietary" type name. Interaction 
techniques for preparing such arguments are fairly standard. If the application 
operation expects an argument oftype char*, for example, the UI will use a dialog 
box to let the user input the string. 

Another category includes application-defined objects with which the user interacts 
- in other words, to which the UI has access. Suppose the application operation 
expects an argument of type Y, where Y is a class of the application. Since the 
user interacts with objects of class Y, the argument object must be either in a 
UI-maintained buffer as a result of a previous operation or selectable by the user 
from the selection context. The only thing the UI must do is check if the candidate 
is of type Y. This explicit type inquiry can be answered with another exposure 
method, say exposeType. Note that it is not enough for exposeType of class Y 

to simply answer "Y". If Y is strictly a specialization of class Z, then an instance 
of Y can always be used in place of an instance of Z in any operation. Therefore, 
exposeType must also answer an object's super classes as long as they form an 
"Is-a" relationship down the chain. If a candidate of type Y answers "Y, Z" , then 
the UI knows it qualifies as a type Y as well as type Z argument. 

Objects in the third category need more consideration. An argument may be an 
application-defined structure. This structure is internal to the application, yet the 
application expects the user to fill in its fields. In general, the UI has no knowledge 
at all about any application-specific structures. Therefore even if the UI is given 
the name of such a type, it will not be able to do anything with it. The solution is for 
the application to provide each internal structure with a constructor which takes a 
flat list of arguments to fill the structure. For example, Coord is a nested structure 
defined in the application, 

struct Aux {char* ss; char* tt;}; 
struct Coord {int X; int y; int Z; Aux aux;}; 

then a constructor 

Coord::Coord(int, int, int, char*, char*) 

should be added to the structure Coord. Now, exposeOps should list func3's 
signature as 

5, II int " , lIintH, II int II , IIchar*II, II char*lI 

instead of 

1, "Coord*". 

Grouping information can be included along with the signature so that the UI will 
know to use a single dialog box to get all these values. After the UI has gathered 
all the values, they can be repacked into type Coord using the constructor. This 
repacking will be done on the application side by a "hook" function responsible for 
actually invoking the exposed operations. 
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3.2 Automatic Generation 

Writing the exposure methods manually would be tedious and error-prone. How
ever, a quick examination reveals that these methods are highly mechanical and 
repetitive and, therefore, can be produced largely by a text scanner after the pro
grammer provides, to the scanner, the application functions to be exposed. Assis
tance from the application programmer is needed for more sophisticated cases. The 
conversion from a single argument of type Coord * into five arguments of basic 
types discussed in the Section 3.1 is probably a place where programmer interven
tion is needed. Tracing operations defined on the super classes and joining them 
with those defined on the current class may also need programmer intervention. 

3.3 Static Application Objects 

So far the term "application objects" has been used to refer to those objects that 
are the primary subjects of the operations and are created, modified, and deleted 
dynamically during an interaction session. Besides these ordinary objects, the UI 
must also deal with other application entities. For example: 

• Classes that define ordinary application objects. Creation of an application 
object must deal with the defining class. In Smalltalk, an instance creation 
message is sent to the defining class. In C++, one of the class's constructors is 
invoked. In both cases, classes are the subjects of the operations. The opera
tions are usually invoked by the user. 

• "Processing engines". In C++, for example, a collection of static functions can 
be grouped into a class. These operations are not meant to be invoked on the 
instances of the class. Rather, they are used to process the objects passed to 
them as the arguments. Such a class actually serves as a processing engine, 
and some processing engines may need to be controlled by the user. 

Entities like these are application objects in a more general sense. They differ from 
ordinary application objects in that 

• They are static. They come into existence whenever the program starts and 
are never deleted. 

• They do not contain geometric representations that mandate how they should 
be visualized in the UI. 

• Their operations, collectively, can be partitioned into fixed, disjoint subsets. 
For example, the instance creation operations of all classes can be gathered 
into a creation group, and each processing engine can form an Qperation group. 
This is in contrast to the ordinary application objects where, given an object, 
the available operations depend on its position in the class tree. 

Although the principles discussed in the previous sections still apply, static objects 
deserve a slightly different treatment than ordinary objects. In fact, the operation 
exposure for such objects is somehow simpler and can be done more efficiently. Since 
it is not necessary for static objects to answer inquiries at runtime, the programmer 
can prepare "exposure inserts" for them that can be planted into the UI components. 
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3.4 Related Work 

The operation exposure portion of the AE layer is not completely novel. Besides the 
Small talk pluggability mentioned earlier, the callback mechanism widely used in 
recent UI toolkits accomplishes a similar result. The underlying principles, how
ever, are different. Rather than requiring the application to expose its operations to 
the UI, callbacks rely on the programmer to "hardwire" actual application function 
calls into the UI components. 

Hardwiring callbacks can be difficult, and callbacks are often associated with 
"spaghetti" code. The problem is not necessarily caused by the callback mecha
nism per se, but rather by the environment where it is applied. Current UI toolkits 
were originally designed to rely on application-provided callback functions to wire 
widgets together, while actually this job can be done more independently of the 
application. In addition, callbacks emerged at a time when applications were built 
overwhelmingly in a procedural rather than object-oriented way. Without the object 
abstraction and other benefits offered by object-oriented programming, it is very 
difficult to organize application functions in a orderly and logical way so as to ex
pose them and to let the UI understand the exposure. This left the callback as the 
only practical solution prior to object-oriented methodology. 

By contrast, the operation exposure takes an object-oriented view of the applica
tion. The UI is now interacting with application objects rather than functions and 
procedures. Selecting an object for manipulation establishes a specific operation 
context associated with the object, and that context can be made known to the 
UI at runtime. The localized, per-class exposure is well-organized and much more 
manageable than traditional callbacks. Note that the operation exposure does not 
completely exclude callbacks. The "exposure inserts" for static objects (Section 3.3) 
are in fact similar to callbacks. For dynamic objects, however, callbacks are indeed 
oflittle use. 

The operation exposure also bears similarities to the Nephew UIMS/Application 
interface [Szekely, 1989] and MIKE [Olsen, 1986]. Like the callback mechanism, 
these two earlier systems also view the application side as consisting of functions 
and procedures and attempt to formulate a well-defined interface to those proce
dural entities. In a procedural world, however, this means that the UI must be 
given extensive information on the entire set of available application operations 
and on how to validate operands for these operations. This can be very difficult for 
a complex system. 

4 Concluding Remarks 

We are currently prototyping with the model described in [Zhou and Kubitz, 1992]. 
Although there are still technical details to be fully worked out, the general idea 
of the AE layer discussed in this paper appears to be quite promising. Figure 2 is 
a sample screen dump showing our prototype in operation. The user is working on 
several application objects (a car body and several wheels) through their exposure 
in the UI. The objects seen on the screen are actually IGOs generated by these 
application objects. 
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Figure 2: The assembly of a Beetle 

The application exposure is not effortless to build, but it is certainly more manage
able than building an application on the basis of a given framework. For example, to 
expose application representations, the programmer must learn about the relevant 
properties of GOs, which consists primarily of the nature of these GOs (e.g. what 
GOs can be used to represent what kinds of application and user interface objects) 
and the use of their constructors. Since the application programmer must know 
this information already in order to use the graphics system, very little additional 
effort is required. On the other hand, if one were building application classes based 
on the GO class tree, one would need to learn how GO classes are defined and how 
they interact with other elements of the framework, such as those responsible for 
windowing, event dispatching, viewing transformation, and so on. In addition, the 
graphics system would be embedded in the application as has been traditionally, 
and reusability would be defeated. This is much more difficult than learning the 
"external properties" of GOs. 
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An Interactive 3D Graphics Class 

Library in EIFFEL 

Russell Turner, Enrico Gobbetti, Francis Balaguer, and Angelo 
Mangili 

An object-oriented design is presented for building interactive 3D graphics applications. The 
design takes the form of a library of classes written in Eiffel, an object-oriented language with 
multiple inheritance, static typing, dynamic binding, garbage collection, and assertion checking. 
The classes form a set of reusable components from which a variety of other interactive 3D 
graphics applications could easily be constructed. A discussion of the overall design goals and 
philosophy is given. This is followed by a summary description of the purpose and implemen
tation of each of the component class clusters. Finally, the issues are discussed of applying 
object-oriented techniques to interactive 3D graphiCS, including encapsulation of existing soft
ware and the implementation on a Silicon Graphics Iris workstation. 

1 Introduction 

A new three-dimensional style ofinteracting with computers is emerging. This style 
relies on fast, high-quality graphics displays coupled with expressive, multi-degree
of-freedom input devices to achieve real-time animation and direct-manipulation 
interaction metaphors. 3D interactive techniques are already being used in systems 
that require the creation and manipulation of complex three-dimensional models 
in such application domains as engineering, scientific visualization or commercial 
animation. Other possibilities include the newest virtual environment research 
which strives for a more intuitive way of working with computers by including the 
user in a synthetic environment. 

The design and implementation of an interactive 3D application are extremely 
complex tasks. The application program has to manage a model of the virtual world 
depicted on the screen, and to simulate its evolution in response to events from 
the user. These events can occur in an order which is determined only at run time. 
In particular, an interactive, event -driven application must be able to handle the 
multi-threaded style of man-machine dialogue associated with direct manipulation 
interfaces, and it must be able to make extensive use of the various asynchronous 
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input devices at the disposal of the user. These can vary from the keyboard and 
mouse to more sophisticated devices such as the spaceball or DataGlove. 

Seen from a software engineering viewpoint, the design of interactive 3D applica
tions can benefit from object-oriented techniques in several ways. For example, data 
abstraction can be used to support different internal data representations, multiple 
graphics drivers can be encapsulated in specific objects, a variety of subclasses can 
offer the same interface for the manipulation of graphical objects, and the distri
bution of information can be used to manage the parallelism inherent in direct 
manipulation programs. From the point of view of a user, the direct manipulation 
metaphor allows the intuitive behavior and relationships of the objects on the screen 
to mirror the class and instance hierarchies of the data objects. Object-oriented con
struction is therefore a natural approach for the design and implementation of an 
interactive 3D graphics system. 

We had already gained some experience building object-oriented software with 
the development of a research user-interface toolkit for the Silicon Graphics Iris 
workstations [Turner et al., 1990] using a custom-made object-oriented extension 
to C based on the concepts of Objective C [Cox, 1986]. This experience showed 
us the limitations of using a hybrid language for the implementation of an object
oriented design. Because the language was an extension of a traditional language, it 
was difficult to completely enforce the object-oriented paradigm, often resulting in a 
mixture of procedural and object-oriented styles. In addition, the language provided 
no multiple inheritance, and no static typing, which limited its expressiveness and 
sometimes influencing design decisions. For example, code duplication was often 
necessary in cases where multiple inheritance should have been used instead. 
Another big problem with our system was its lack of garbage collection, which 
required us to spend too much time chasing memory bugs and devising complex 
algorithms to destroy object structures. 

As a result, we became convinced ofthe importance of using a pure object-oriented 
language for our work, and Eiffel was chosen for the 3D library because of its char
acteristics which corresponded closely to our needs. In particular, Eiffel supports 
multiple inheritance, static typing, dynamic binding, garbage collection, assertion 
checking and the ability to call other languages easily. We were interested to find 
out if these powerful object-oriented features would help in the process of 3D design 
and we also wanted to test ifit was possible to use a pure object-oriented language 
like Eiffel for an area with such large constraints on performance as interactive 3D 
graphics. 

In this chapter we will present the design and implementation of a set of classes 
in Eiffel which can be assembled to create these types of applications. Section 2 
discusses our design goals and methods, section 3 presents a detailed description of 
the various clusters of classes making up the library, section 4 describes how these 
classes are assembled into applications and section 5 discusses some of the issues 
we have encountered. 
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2 System Design 

2.1 Identification of Principal Class Clusters 

We initially spent most of our time in group discussions about the design of the 
system. The software development tools for Eiffel encourage the grouping of related 
classes into what are called clusters. We therefore decided to split the problem into 
several principal clusters to be developed in parallel by different people, with each 
cluster carried through the design process to implementation. The identification 
of these clusters was based on an analysis of the 3D graphics application domain 
and on our previous experience designing other graphical systems. This process is 
typical ofthe bottom-up approach that object-oriented design tends to promote. The 
clusters we identified were: 

• a modeling cluster, to represent the various components of graphical scenes; 

• a rendering cluster, to provide several rendering facilities; 

• a dynamic cluster, to provide ways to encode interactive and animated behav
ior; 

• a user-interface cluster, to provide standard interaction widgets and devices. 

We also developed some lower-level clusters for providing data structure and math
ematical functionality. One of these, the mathematics cluster, provides standard 
mathematical objects such as VECTOR and MATRIX, as well as classes more spe
cific to computer graphics such as TRANSFORM_3D and QUATERNION. 

For the purposes of describing the class structure of the clusters, we made use of 
object-relation diagrams, as in [Rumbaugh et al., 1991], and pictured in Figure 1. 
The definition of the static structure of the design is usually the first step in the 
design process, and these diagrams allowed us to give a schematic presentation of 
this structure which combines both instance relations and inheritance relations. 
These diagrams became a standard way for us to exchange ideas during the design 
meetings. 

A .. B Class A inherits from class B 

A ---0 B Every instance of A is related to zero to one instances of B 

A --- B Every instance of A is related to exactly one instance of B 

A • B Every instance of A is related to zero to many instance~ of B 

Figure 1 : Object-Relation Diagrams 

These diagrams are the only formal notation we used during the design process. No 
other types of diagrams or special notations were used. These diagrams are useful 
but we tend to resist more formalized schemes (data flow diagrams, for example). 
These other techniques could be of some use, particularly if used together with 
some CASE tools for maintaining diagrams up-to-date with respect to the code, and 
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we may consider them in the future. Fortunately, Eiffel's assertions and invariants 
offer a way to represent the programming contracts between different components 
of the system. We therefore sometimes use fragments of Eiffel code early in the 
design instead of pseudo-code or data-flow diagrams. 

2.2 Conventions 

To encourage more regular interfaces, and to improve the reusability of our classes, 
we adopted some conventions for naming Eiffel features. Some of these conventions 
are: 

• features that return an alternate representation of an object always begin 
with as. For example, as-.quaternion: QUATERNION, which can be applied to 
instances of MATRIX AD; 

• features that modify the value of Current as a result of some computations 
based on the parameters always begin with to. For example, to..sub(le{t, right: 
like Current), which can be applied to instances ofNUMERILOBJ; 

• features that store the results of their computations in one of their parameters 
always contain the suffix jn. For example, rowjn(i: INTEGER; 0: VECTOR), 
which can be applied to instances of MATRIX. 

One result of these conventions is that features tend to follow the style of modifying 
Current or one of the parameters instead of creating a new object. Therefore, it is 
the client's responsibility to allocate all the necessary objects, and this can reduce 
the overhead due to allocation and collection of unnecessary temporary objects. 

We put some effort into defining preconditions, postconditions and invariants for all 
the routines and classes because, by specifying the programming interface contract, 
they are a key element for promoting reusability. Assertions formally define the 
behavior of the classes and therefore we use them early on in the design phase. They 
also provide a certain form of documentation and help during debugging. Assertions 
also help to produce efficient software. By clearly defining the responsibilities of 
each component, defensive programming techniques can be avoided. 

2.3 Encapsulation 

One of the important features of Eiffel, in our opinion, is the ability to encapsulate 
routines written in other languages. Because this can be done cleanly, it helps to 
promote pure object-oriented design. It is also essential if we are to acheive one 
of the main goals in object-oriented programming which is reusability. Decades of 
programming effort have been spent in developing and testing large software li
braries in various languages. Some of these libraries, for example the FORTRAN 
BLAS and LAPACK libraries, provide a functionality that could not be particularly 
improved upon by reimplementing them in an object-oriented language. Hybrid lan
guages such as C++ [Stroustrup, 1986] and Objective-C [Cox, 1986] try to encour
age this reuse by allowing the programmer to continue developing their software 
using object-oriented extensions. Unfortunately, this approach does not enforce a 
clean separation between the object-oriented and non-object-oriented portions of 
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the software. By putting an object-oriented gloss on traditional languages, the soft
ware engineering problems of the traditional languages are perpetuated into the 
object-oriented languages. 

On the contrary, the Eiffel approach is to define a clean and localized interface with 
the non-Eiffellanguage components. This does not compromise the object-oriented 
paradigm upon which the language is based. Our VECTOR and MATRIX classes 
are implemented on top of the BLAS and LAPACK standard FORTRAN libraries, 
and for us the ability to reuse this functionality was an important aspect of the 
development. A great deal of functionality at a high performance was added in a 
small amount of time, without sacrificing the object-oriented design. 

3 Overview of Principal Clusters 

3.1 The Graphical Model 

Interactive 3D graphics applications must be able to respond to asynchronous input 
events as they happen, so designers must build their programs to behave properly 
no matter when and in what order the events will occur. This is usually done by 
maintaining a global data model which represents the current state of the applica
tion program at any moment during its execution. In an object-oriented system this 
global data model, called the graphical model, consists of a hierarchy or directed 
acyclic graph of instances representing the virtual objects to be manipulated. Many 
different aspects have to be considered when designing the graphics model, such as 
rendering, interactive behavior, inheritance of attributes and maintaining internal 
consistency. Several class structures have been proposed in the literature for repre
senting three-dimensional hierarchical scenes. Examples are found in the modeling 
and rendering library Dore [Pacific, 1992], [Fleischer and Witkin, 1988], which de
scribes an object-oriented modeling testbed, [Grant et aI., 1986], which presents 
a hierarchy of classes for rendering three-dimensional scenes, [Hedelman, 1984] 
which proposes an object-oriented design for procedural modeling, and the object
oriented 3D interaction toolkit UGA [Conner et al., 1992]. 

Interactive 3D graphics systems are typically concerned with manipulating mod
els arranged in a hierarchical fashion. This hierarchy can be represented as a 
tree of homogeneous transformations which define the position, orientation, and 
scaling of the reference frames in which graphical primitives are defined.(see 
[Boulic and Renault, 1991]). 

The classes from which the graphical model is built are contained in the modeling 
cluster, which is presented in Figure 2. 

The WORLD_3D class represents a three-dimensional scene and contains the top 
level of the graphical modeling hierarchy and all the other global information that 
the application manipulates such as the environmental illumination parameters 
(packaged in instances of AMBIENT). 

The transformation hierarchy is represented by instances of NODE_3D which main
tain a transformation object and also may contain child nodes so as to form a tree. 
It is used to specify the position, orientation, and scaling of the reference frames 
to which the models are attached. In addition, the NODE_3D contains pointers to 
other objects which maintain information about the node such as MATERIAL and 
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Figure 2: Basic modeling classes 

FILTER. These objects may be multiply referenced and their attributes inherited 
through the instance hierarchy by delegation. The NODE_3D itself can be sub
classed into three varieties: lights, cameras, and shapes, which represent the three 
basic types of objects in the hierarchy. 

Instances of MATERIAL are used to define the reflectance properties of physical 
surfaces. They contain information such as the color and intensity of the emission, 
diffuse, and specular components as well as shininess and transparency factors for 
the specular reflection. Instances of FILTER represent a two-dimensional image 
which can be projected onto the contents of the node in various ways to achieve 
texture mapping. 

Instance of LIGHT represent a light source and maintain information about its 
color and intensity. Subclasses of LIGHT, such as DIRLIGHT, POS_LIGHT, and 
SPOT _LIGHT define various types of light sources and maintain more specific 
information such as direction, location in space and angle of projection. 

An instance of CAMERA represents a virtual camera positioned in the scene, and 
maintains information about its viewing frustum and its perspective projection. It 
is through virtual cameras that the 3D world is rendered on a 2D screen. 

The SHAPE_3D class represents the concept of a physical object having a geometric 
shape in Cartesian space. Geometries are defined in a separate class, to make them 
more general and reusable. By implementing SHAPE_3D so as to reference an 
instance of a GEOMETRY _3D, it is possible, for example, to define operations on 
abstract geometry, independant of the other shape characteristics. Also, since the 
geometries can be multiply referenced, a single geometry may be used in multiple 
locations in the hierarchy, with different node characteristics. In this way, the 
hierarchical structure of the scene can be designed independently of the geometries. 
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Initially, simple geometries can be used which then are easily replaced by more 
elaborate ones as work progresses. Complex hierarchical structures like skeletons 
can be designed and reused several times with different geometries attached to 
them to change their appearance. 

The GEOMETRY_3D class can be subclassed to provide various types of geometries. 
Examples are: 8M_GEOMETRY, which defines a geometric object by specifying its 
surface as a mesh of triangular facets, and RME8H_GEOMETRY, which represents 
objects as rectangular meshes of three-dimensional points. 

3.2 Multiple Inheritance 

One notable aspect of Eiffel is its support for multiple inheritance. In fact, the 
language and the standard clusters that come with it tend to support a very fine
grained approach to multiple inheritance, which we have adopted in our design 
philosophy. The result is a large number of relatively small classes, many of them 
deferred, which encapsulate a single concept or piece of functionality. Figure 3 
illustrates this type of inheritance for the NODE_3D class, although we usually do 
not show it in so much detail in our other object-relation diagrams. 

Figure 3: Multiple Ancestors of the NODE.-3D Class 

In this way, multiple inheritance allows us to compose the NODE_3D's behavior as 
a collection of partial views, each one defining a particular programming contract 
and functionality. 

3.3 Rendering 

For 3D interactive graphics, two of the most important types of operations are 
rendering the visual appearance and implementing the dynamic behavior of the 
different graphical objects. An important design question that arises is: where 
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should the graphical appearance and dynamic behavior be encoded? Two possible 
solutions are: to encode them directly in the model (e.g. by adding a specific render 
feature to the various graphical objects), or to design a new set of classes that are 
able to perform these operations. 

When designing simple two-dimensional class libraries, such as user-interface 
toolkits, these kinds of operations are usually encoded directly in the model. For 
more sophisticated applications, however, this kind of approach is usually not fea
sible because there may be no simple way for a graphical object to perform these 
operations based on its own internal data. 

Taking as an example the operation of rendering a three-dimensional scene, several 
arguments suggest the creation of auxiliary classes: 

• there are potentially many different algorithms for drawing graphical scenes 
which can coexist in the same system. For example: ray-tracing, radiosity, or 
z-buffering techniques. The details of these techniques should not have to be 
known by every graphical object. 

• rendering may occur on several different types of output devices such as the 
frame buffer, a texture map, or an output file, and it is not necessary for all 
this knowledge to be spread out among all the graphical objects. 

• several rendering representations, such as wire-frame or solid, may be se
lectible on a per graphical object basis. The same object may be viewed by 
several different windows at the same time, each view using a different rep
resentation. 

• some rendering algorithms may require access to global modeling data simul
taneously. For example, a hidden surface algorithm may need to depth sort a 
polygon display list. 

Obviously, the rendering operation needs much more information than just the type 
of object to be rendered. Also, a single graphical instance can be rendered in several 
different ways depending on the type of renderer and the type of representation. 
We therefore decided to design and implement a new set of classes to maintain this 
additional information and to implement the various rendering algorithms. 

The rendering cluster is composed of a set of classes that are used to render a 
three-dimensional scene. Figure 4 illustrates the basic design ofthis cluster: 

Five basic sorts of classes can be identified: 

• renderers (subclasses of RENDERER). These represent particular techniques 
for rendering entire scenes. The actual rendering algorithm is implemented in 
these classes. An important subclass of RENDERER is LIGHTEn -RENDERER, 
which describes renderers that use illumination parameters to compute a vi
sual representation of the scene. 

• cameras (subclasses of CAMERA). These are objects able to return geometric 
viewing information such as perspective and viewpoint. 

• worlds (subclasses of WORLD). These are objects which contain a modeling 
hierarchy and other information such as global illumination parameters. 
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r-------------------------------------~ WORLD_3D 

1..----------0 CAMERA 

(RENDERER) •• ------/ •• ~rn~ •• t--------e. (VIEWABLE_3D) 

SOLID_VIEW 

(LIGHTED_RENDERER) •• --/--e.(SHADE~ •• ---------e. (LIGHT) 

Figure 4: Basic rendering classes 

• viewable models (subclasses of VIEWABLE_3D such as SHAPE_3D in the 
modeling cluster). These represent visible objects which have position, orien
tation and scale in Cartesian space, as well as a geometry, and a material . 

• views (subclasses of VIEW). These are objects which define how a viewable 
object should be represented. 

In this architecture, the view objects act as intermediaries between the models and 
the renderer, telling the renderer what technique (e.g. wireframe, solid, highlighted) 
should be used to display each graphical object. This provides a clean separation 
between a model and how it is viewed. Since multiple views may reference the same 
model, an application can have, for example, more than one window onto a world, 
each representing the objects in different ways. 

When a renderer displays a particular graphical object, it first consults its views 
and their attached viewable objects to determine the necessary drawing algorithm. 
This type of rendering operation, the binding of which depends on more than one 
target, can be described as polymorphic on more than one type. 

Object-oriented languages with dynamic binding like Eiffel, which dispatch on 
the basis of the target type at the moment of feature application, offer a way 
to select between different implementations of the same operation without using 
conditional statements. This ability to have the data determine the algorithm is 
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one of the major advantages of object-oriented programming and can be used even 
when the dispatching has to be done on more than one type. We have done this 
for the rendering operation, which is implemented by applying a feature to each 
polymorphic variable we want to discriminate and letting the dynamic binding 
make all the choices [Ingalls, 1986]. 

To illustrate how this method works, we will look at the various classes that fonn 
the rendering cluster. To render a scene, a render feature is applied to a renderer 
instance, which has the task of displaying all the objects that are attached to its 
views. To do this the renderer, after some initializations, sets up the camera and 
applies a render feature to all its views with itself as a parameter. 

Each time the render feature is applied to a view, it communicates back to the 
renderer infonnation about what kind of geometries are attached to it through 
its viewable objects. This is done by storing the current renderer and applying a 
view feature to all the viewable objects known by the view. The viewable objects 
perfonn a similar kind of operation by applying the portray feature to the model's 
geometry and respond to the view feature call with a more specific viewing feature 
depending on the type of view object. For example, a view.rmesh feature will be 
applied by objects confonnant to RME8H, a view..sm feature by objects confonnant 
to 8M_GEOMETRY, and so on. 80, every subclass of VIEW must implement a new 
view_ .. feature for each of the types of geometries that need to be distinguished. The 
specific view features themselves are implemented in VIEW subclasses by calling 
back to the current renderer with the specific render feature (e.g. render -wf .rmesh) 
to display the object in the desired representation. It is only at this point that 
the graphical object is actually displayed on the screen. Figure 5 shows a typical 
example of the sequence of feature invocations resulting from the render feature 
being applied to a renderer. 

Figure 5: Multiple Dispatching for a: Render Feature Call 

As Figure 5 shows, rendering a single object sets off a chain of feature calls which 
pass through the view, the viewable model and its geometry and back again ulti-
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mately resolving to the appropriate rendering feature. In this way, the composition 
of the instance data structure alone automatically determines which specific ren
dering algorithm is invoked. 

3.4 Dynamics and Input 

Implementing interactive and animated behavior is among the most problematic 
aspects of computer graphics design. These can actually be thought of together as 
the problem of dynamic graphics. How does the application change its graphical 
output in response to asynchronous input? Viewed in this way, input from the user 
results in interactive behavior, while input from other data sources or real-time 
clocks results in animated behavior. 

The first problem a sequential application (a single process with one thread of 
control) must solve is multiplexing between different asynchronous input sources 
and handling the various input data in a consistent time order. The standard way 
to do this in object-oriented toolkits is to have a central input-gathering algorithm 
responsible for selecting between the various input queues (e.g. the windowing 
system, various devices, and inter-process communication channels) and extracting 
each input event in the proper time order, resulting in a single time-ordered queue of 
input events which can be handled sequentially. For an application which assumes 
this purely input-event-driven model, the basic dynamic behavior algorithm then 
takes the form of a loop as follows: 

Initialize the application and select input channels 
from start until over loop 

Go into wait state; 
Wake up when input arrives; Respond to input; 

end 

In this event loop structure, the dynamic behavior of the application is implemented 
in the section Respond to input. A natural object-oriented way to model a worksta
tion with multiple input devices is for each input device (e.g. mouse, spaceball, 
keyboard) to be represented by a separate instance of a particular input device 
class. To implement such a model, the first action taken in response to an input 
event is to update the input device object representing the source of this data. For 
example, when the application receives an input event indicating that the user 
moved the mouse, the state ofthe mouse object has to be updated. 

Once an input device object has been updated, the state of the application has 
changed and some action must be performed to respond to this input event and 
implement the dynamic behavior of the program. For example, if we want the 
virtual camera viewing the scene to move when the user moves his ,spaceball, a 
mechanism must be devised to implement this. An obvious way to do this is to 
implement a feature in the CAMERA class that is called every time the state of the 
spaceball changes. However, for similar reasons that led to the separate rendering 
and modeling classes described in the previous section, it is often better to move 
the code implementing the dynamic behavior into a separate object, which we 
call a controller. In the case of the virtual camera, we would implement a camera 
controller object which can be attached to it. The controller knows how to update 
the camera parameters in response to spaceball events. We call these controller 
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objects dynamic objects because they change their state in response to external 
input. 

The encapsulation of an object's graphical appearance allows more complex graph
ical assemblies to be constructed from graphical components. We would like to 
be able to build more complex dynamic behavior in a similar way by assembling 
dynamic objects together. To do this effectively, a mechanism must be developed 
to represent the changes of state of dynamic objects in response to input and to 
maintain the dependencies between dynamic objects so they can be updated. We 
call these changes of state events, and implement the updating of dependent objects 
through the proper distribution of events. 

To model the dynamic behavior of an application, as described in the previous sec
tion, we have created two clusters of classes: an input cluster for maintaining and 
multiplexing between multiple input channels and a dynamic cluster for represent
ing and distributing events. 

NET_NODEO--•• NET_CONNECTION_LIST[T] o---.NET CONNECTION 
T->NET_CONNECTION - I 

(NET_MESSAGE) 

Figure 6: The Input Cluster 

The design of the input cluster is represented in Figure 6. It is adapted from the set 
of inter-process communication classes developed by Matt Hillman [Hillman, 1990] 
and partially reuses most of its components. 

The NET..NODE class represents objects that can form and accept socket connec
tions with other processes, and merge input from all of these sources into a single 
event stream. It is through these connections, which are represented by instances 
of NELCONNECTION objects, that asynchronous input from the various input 
devices, from the window system, and from remote processes arrives to the appli
cation. The input data is represented by objects of type NET ..MESSAGE which are 
able to both read from and write to a network connection. On top of these basic 
classes, we have implemented several extensions by means of specialized connec
tion objects and features. One of these is the user interface toolkit presented in the 
next section. 

(HANDLER) •• --... EVENT[H, D] • ...._--DYNAMIC 
H->HANDLER 
D->DYNAMIC 

Figure 7: The Dynamic Cluster 

The distribution of events are modeled in the dynamic cluster whose principal 
components are shown in Figure 7. Three types of objects are used in modeling 
the dynamic behavior of our applications: events, handlers, and dynamic objects. A 
dynamic object maintains a list of the different types of events it can send out to 
other objects, that is, a list of instances of a specific subclass of EVENT for each 
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type of event it can transmit. A dynamic object transmits an event every time it 
has to communicate a change of state, the type of event indicating what kind of 
state change occurred in the dynamic object. Each event instance maintains a list 
of handler objects, called subscribers, which are objects that need to be informed 
whenever the event is transmitted. These subscriber objects then handle the event 
to implement their dynamic behavior. 

A dynamic object generates an event by applying to its event instances a feature 
called transmit. This feature is implemented in the EVENT class by applying a 
specific handling feature to all of its subscribers. This handler feature, which is 
implemented separately by each subclass of EVENT, has the source of the event 
(i.e. the dynamic object which transmitted the event) as its only parameter. For 
example, an event of class BUTTON.DOWN transmits the button down event by 
application of the feature handle_button.1lown, and an event of class BUTTON_UP 
transmits by applying handle_button_up. As in the rendering cluster, this distinction 
is made completely through the dispatching mechanism inherent to the dynamic 
binding and not through conditional statements. 

This particular representation of dynamic object behavior follows the concept of an 
event being a signal between two connected objects, a source and a target. The only 
information transmitted by the event itself, however, is its type, which is indicated 
by the name of the feature called. Any other data must be explicitly queried from 
the source by the handler of the event. The handler can then update its internal 
state and perform actions according to the changes of state in the source objects and 
its own internal behavior. In a similar manner, secondary events can be transmitted 
by handlers that are themselves dynamic objects. In this way, the overall behavior 
of an application can be encoded to a large degree in the graph of connections 
traversed by the events. 

The ability to handle events is represented by the HANDLER class, which imple
ments the details of event dispatching. Several deferred subclasses of HANDLER 
exist, each one defining a general dynamic object that can handle certain types of 
events. Handler classes can be implemented by inheriting from these general han
dlers and redefining the handler features to respond to specific events. In this way, 
the dynamic behavior of an individual object is encoded entirely within its event 
handler features. 

Dynamic objects are a very important concept in our system design: graphics ap
plications written inside our framework can in fact be thought of as big networks 
of dynamic objects that transmit events and handle them in real time. 

3.5 User Interface 

The user interface cluster provides the sorts of interactive capabilities associated 
with modem graphics workstations, in particular, a mouse, a windoWing system, 
and standard types of 2D interaction widgets, like text input, sliders, and buttons. 
It also encapsulates, in an object-oriented way, some of the newer 3D input devices 
such as the Spaceball or the DataGlove. 

This functionality was already available to us from an earlier development effort 
by our group to create a user-interface toolkit, called the Fifth Dimension Toolkit, 
for use in our laboratory. When that project started, we had no access to an object-
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oriented language, so we developed a technique for doing object-oriented program
ming in C based on [Cox, 1986]. In designing this toolkit, which was inspired to 
a large extent by the NextStep AppKit [Thompson, 1989], we consciously tried to 
make as purely object-oriented a design as possible. 

A particularly useful feature ofthe 5D toolkit is an interface builder tool, modeled 
after the NextStep's interface builder, which allows panels of widgets to be arranged 
and their attributes edited interactively. The resulting user-interface widget panels 
can then be stored in a human-readable (and editable) ASCII file and loaded in by 
an application program at run-time. 

Given this functionality and the fact that numerous other application programs 
had already been developed using the 5D Toolkit, we decided not to start over 
from scratch in Eiffel but rather to encapsulate the 5D toolkit in an Eiffel class. 
This presented some problems, however, because encapsulating an object-oriented 
software library is considerably more difficult that a non-object-oriented one. Un
like traditional subroutine libraries, which usually do not maintain their own data 
structures or state, an object-oriented software library allocates memory and sets 
up a network of interrelated data structures. Any encapsulating Eiffel code, there
fore, must either duplicate all of the underlying object's internal data structures 
itself, raising problems of consistency, or it must separately encapsulate each ofthe 
objects maintained by the encapsulated object. For us, this problem was further 
complicated by the fact that the toolkit event distribution mechanism, in which 
any dynamic object can send an event to any other object, would require events 
to be sent in both directions across the language boundary. Since we wanted our 
Eiffel objects to receive events from the 5D Toolkit objects, an event translating 
mechanism had to be build. 

Our solution was to associate a parallel Eiffel instance of single class, UI, for every 
instance of a 5D toolkit object. Since the toolkit objects are dynamically typed, the 
single UI class encapsulating all the toolkit functionality is reasonable. Most of the 
5D toolkit objects are lower level and do not need to be directly accessed by Eiffel, 
so a mechanism was devised so that the parallel Eiffel UI object for each toolkit 
object is created only on demand when it is needed in the Eiffel application. When 
the instance is no longer referenced on the Eiffel side, it is garbage-collected by 
Eiffel even though the 5D toolkit object still remains. An interface was also built to 
translate 5D toolkit events into Eiffel event types as they occur. Because the Eiffel 
types of events were largely inspired by the toolkit, this was not too difficult, but 
the problem of mapping one system of user-interface event types onto another is in 
general not trivial. 

4 Building Appplications 

Figure 8 gives a typical example of how various classes from the modeling, render
ing and dynamic clusters are combined to form an application structure. In this 
case, a flight controller object is attached to a particular node in the modeling hier
archy. This controller subscribes to new_transform events from the trackball object. 
When the trackball receives a mouse_moved event, it responds by transmitting a 
new1ransform event. When this is received by the flight controller, it responds by 
updating the new position of the node. 
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Figure 8: Example of Application Program Structure 

Using the Eiffel 3D class library, an interactive 3D application program can be 
implemented by constructing a top-level class. When the program is started, it 
invokes the Create feature of this class, which instantiates the various objects, 
assembles them, and starts the event handling loop. The first part of the Create 
algorithm initializes the data structures, and loads in all the panels ofuserinterface 
objects from files created by the user-interface builder. It then creates windows to 
contain these panels and to display the three-dimensional scenes. The visibility 
state of the different windows are set to reflect the initial state of the program. 
The event handling loop is then started up and managed by a top-level handler 
class which, in response to user input, implements the various application program 
commands. 

The application appears to the user as a collection of windows displaying either 
three-dimensional views of the world, or widget control panels. Combinations of 
windows may be made visible at any given time as desired. After the interface ob
jects have been instantiated, controllers are then bound to the different widgets and 
devices using the subscription mechanism presented earlier. Specific ·instances of 
user-interface widgets can be identified by their names, created using the interface 
builder. 

The interactive behavior of the application is determined by both the internal 
behavior of the controllers, as implemented in their event handler features, and by 
their connections to input devices, interaction widgets and other controllers. Some 
of the controllers that were written are general purpose and reusable in other 
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applications. Others, like controllers that change the event subscription bindings 
to alter application behavior, are more application specific and difficult to reuse. 

Once the static structure and the initial binding of controllers to widgets and devices 
is set, the event loop is started. Events generated by the various input devices and 
panel widgets propagate through the network of subscriptions to the controllers 
which perform the required actions. 

The input devices currently available in the system are: a spaceball, a mouse and 
a dial box. The mouse is used to select nodes and to specify position and orienta
tion in the 3D space using a virtual trackball metaphor. The spaceball is used to 
manipulate cameras, lights and nodes through differential transformations which 
can be interpreted according to various interaction metaphors, while the dial box is 
used to control other continuous parameters of the selected objects such as scaling, 
color, and camera viewing angle. 

When the user selects a graphical object, using the mouse, appropriate controllers 
are bound to it and the affected interaction panels are updated to display the 
relevant information for the selected node. For the dial box, the action of selecting 
an object may also change which controller is tied to the device since the parameter 
controlled by each dial depends on the type of selected object. For example, if a 
shape is selected the dial box acts on the scaling parameters of its node, while 
if a camera is selected the dials control the field of view and the clipping planes. 
Usually, the spaceball is set up to control the camera, while the mouse, through its 
trackball controller object, controls the currently selected node. Using a menu, the 
user can modify these default bindings and change the control metaphor for the 
selected node or the current camera. 

5 Discussion 

5.1 Building Reusable Components 

The bottom-up approach, which object-oriented design tends to promote for building 
applications, leads to the creation of software systems that are large assemblies of 
reusable basic components. We have to admit, however, that components are not 
usually reusable from the beginning, and some effort is usually required to make 
them general enough for exploitation in different applications. 

The first step for making a component reusable is to make it usable in the first 
place. To ensure that this is true, client applications need to be written and the 
resulting feedback used to improve the design. For this reason, we believe that 
building test applications to obtain a first draft of class libraries is necessary, and 
for most non-trivial class libraries preferable to directly building components from 
first principles. One such test application that we have built is a key-frame ani
mation system, which allows objects to be animated by interactively placing them 
in key positions and then interpolating a spline curve to obtain a smooth motion 
[Gobbetti et al., 1993]. 

Object-oriented techniques make it possible to exploit the similarity of structure 
of all applications in a particular domain by creating frameworks that define and 
implement the object-oriented design of an entire system such that its major compo
nents are modeled by abstract classes. High level classes of these frameworks define 
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the general protocol and handle the default behavior, which is usually appropriate 
for most of the cases. Only application-specific differences have to be implemented 
by the designer through the use of subclassing and redefinition to customize the 
application. The reuse of abstract design which is offered by this solution is even 
more important than simply the reuse of code. 

Several well known application frameworks exist, particularly in the area of user 
interfaces. Examples are: Smalltalk's MVC [Krasner and Pope, 1988], Apple Com
puter's MacApp [Schmucker, 1986], and the University of Zurich's ET++ [Weinand 
et al., 1989]. 

We believe that our dynamic, modeling, and rendering clusters are a first step 
towards developing a framework for our interactive three-dimensional graphics 
applications. However, much work still remains to be done to make this framework 
general enough for the creation of future applications. 

5.2 Performance 

Performance is an important concern when building interactive 3D graphics pro
grams. Poor performance is often used as a criticism of using pure object-oriented 
techniques for the development of such applications, and as an argument in favor 
of using languages that freely mix the procedural and the object-oriented paradigm 
such as C++ or Objective-C. 

The development of the key-frame animation system showed us that high perfor
mance applications can be obtained using a pure object-oriented language such as 
Eiffel without compromising the design. This particular application, built using 
the Eiffel class library, is able to render fully shaded scenes containing several 
thousands of polygons at interactive speed (more than ten refreshes per second) on 
a Silicon Graphics Iris, allowing the user to edit and animate three-dimensional 
shapes using a direct manipulation metaphor. 

Several factors permitted this kind of high performance. The fact that Eiffel is 
purely object-oriented and statically typed allows the compiler to perform impor
tant optimizations (such as inlining, unneeded code removal, and simplification of 
routine calls), resulting in high-performance code without compromising the purity 
of the design. Optimization of several important aspects of our software system 
was often obtained by creating specialized subclasses that handle special cases. 
The ability to encapsulate highly-optimized FORTRAN numerical routines also 
contributed. 

The availability of garbage collection in Eiffel often allowed us to simplify algo
rithms and data structures, resulting in more compact and efficient code. Since 
the garbage collector is incremental, it is possible to use it in interactive programs 
only at those times when it does not disturb the user. By carefully designing the 
components to minimize creation of temporary objects, we have been able to limit 
the CPU cost of object allocation and deallocation to under 10 percent. Previous 
experience developing a user interface toolkit using an object-oriented extension of 
C showed us the importance of these memory issues. In this system a great deal 
of design effort was spent in defining and maintaining appropriate data structures 
and storage schemes in order to properly destroy unreferenced objects. 
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6 Conclusions 

Interactive 3D graphics is still in its infancy as a user interface paradigm. The chaI- . 
lenge of building applications that realize the full potential of modem 3D computer 
graphics hardware remains immense. However, the development of object-oriented 
design techniques represents a significant advance toward the goal of creating 
reusable and extensible software components and assemblies for interactive 3D 
graphics software construction. 

Our experience using a pure object-oriented design strategy and implementation 
language for building a general-purpose interactive 3D software library was very 
positive and showed us that these techniques are well suited for creating high
performance applications made of assemblies of reusable components in the field of 
interactive 3D graphics. In practice, it is almost impossible to build up a complete 
software system from scratch, and therefore even a pure object-oriented design 
needs some way to interface with existing software in traditional languages. We 
feel that the best way to do this is to have a well-defined separation between the 
object-oriented and traditional components of the software, in which the object
oriented components can be thought of as a higher-level language layer on top of 
the traditional language layer. This paradigm could be extended to a multi-layered 
approach with a declarative layer, based on constraint or logic programming, built 
on top of the object-oriented layer. 

Most of the components that were created during this project are still being used 
and extended for our current work, making it possible for us to concentrate our 
efforts in solving the specific problems of new application domains. We are there
fore continuing to use Eiffel and object-oriented techniques for our current research 
work, which focuses on the fields of neural networks, cooperative work for anima
tion, and physically-based simulation of deformable models. 
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